Skip to main content

Consistency of Proof-of-Stake Blockchains with Concurrent Honest Slot Leaders

We improve the fundamental security threshold of eventual consensus Proof-of-Stake (PoS) blockchain protocols under longest-chain rule, reflecting for the first time the positive effect of rounds with concurrent honest leaders. Current analyses of these protocols reduce consistency to the dynamics of an abstract, round-based block creation process that is determined by three probabilities: pAh, the probability that a round has a single honest leader; and pH, the probability that a round has multiple, but honest, leaders.

We present a consistency analysis that achieves the optimal threshold ph + pH > pA. This is a first in the literature and can be applied to both the simple synchronous setting and the setting with bounded delays. Moreover, we achieve the optimal consistency error e−Θ(k) where k is the confirmation time. We also provide an efficient algorithm to explicitly calculate these error probabilities in the synchronous setting.

All existing consistency analyses either incur a penalty for rounds with concurrent honest leaders, or treat them neutrally. Specifically, the consistency analyses in Ouroboros Praos (Eurocrypt 2018) and Genesis (CCS 2018) assume that the probability of a uniquely honest round exceeds that of the other two events combined (i.e., ph - pH > pA); the analyses in Sleepy Consensus (Asiacrypt 2017) and Snow White (Fin. Crypto 2019) assume that a uniquely honest round is more likely than an adversarial round (i.e., ph > pA). In addition, previous analyses completely break down when uniquely honest rounds become less frequent, i.e., ph < pA. These thresholds determine the critical trade-off between the honest majority, network delays, and consistency error.

Our new results can be directly applied to improve consistency of the existing protocols. We complement these results with a consistency analysis in the setting where uniquely honest slots are rare, even letting ph= 0, under the added assumption that honest players adopt a consistent chain selection rule.

Partner with research

Investing in and contributing to Input Output Research means supporting one of the most rigorous and peer-reviewed blockchain R&D efforts in the world. Our work bridges academia and industry, advancing decentralization, security and scalability while creating open knowledge that benefits the entire ecosystem. Whether through funding, collaboration, or partnership, contributors play a vital role in shaping innovations that are ethical, impactful and built to endure.