Skip to main content

A Composable Security Treatment of the Lightning Network

The high latency and low throughput of blockchain protocols constitute one of the fundamental barriers for their wider adoption. Overlay protocols, notably the lightning network, have been touted as the most viable direction for rectifying this in practice. In this work we present for the first time a full formalisation and security analysis of the lightning network in the (global) universal composition setting that takes into account a global ledger functionality for which previous work [Badertscher et al., Crypto’17] has demonstrated its realisability by the Bitcoin blockchain protocol. As a result, our treatment delineates exactly how the security guarantees of the protocol depend on the properties of the underlying ledger. Moreover, we provide a complete and modular description of the core of the lightning protocol that highlights precisely its dependency to underlying basic cryptographic primitives such as digital signatures, pseudorandom functions, identity-based signatures and a less common two-party primitive, which we term a combined digital signature, that were originally hidden within the lightning protocol’s implementation.

Partner with research

Investing in and contributing to Input Output Research means supporting one of the most rigorous and peer-reviewed blockchain R&D efforts in the world. Our work bridges academia and industry, advancing decentralization, security and scalability while creating open knowledge that benefits the entire ecosystem. Whether through funding, collaboration, or partnership, contributors play a vital role in shaping innovations that are ethical, impactful and built to endure.