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—— Abstract

An important property of blockchain systems is the time it takes for a block to enter the irreversible
part of the chain, which is typically captured by the notions of finality or settlement. To date,
only Nakamoto-style protocols are known to simultaneously offer (1) resilience against adaptive
adversaries controlling up to less than half of the underlying resource (such as stake or computational
power), (2) dynamic participation (where parties join and leave at will without announcement), and
(3) self-healing, i.e., being able to recover from temporary periods of adversarial majority without
external intervention. However, these protocols offer only probabilistic settlement that requires wait
time linear in a security parameter. The following open question thus arises: can a protocol be
designed that maintains these properties—50%-resilience to adaptive attacks, dynamic participation,
and self-healing—while offering faster settlement?

This work answers the above question by proposing a novel Nakamoto-style proof-of-stake (PoS)
protocol—Quroboros Peras—that builds on Ouroboros, the proof-of-stake algorithm behind the
Cardano Blockchain. Our protocol augments the chain-selection rule to incorporate a weight-based
criterion and features a mechanism for certifying blocks, which increases their weight. Under
favorable conditions, in the presence of an adversary controlling less than 25% of the stake, Peras
continuously certifies new blocks in rapid succession, thereby significantly accelerating settlement
time. In the presence of larger adversaries, Peras’ settlement guarantees gracefully fall back to those
offered by Ouroboros. A unique feature of our approach is that, compared to prior approaches based
on finality gadgets, our settlement acceleration mechanism retains the self-healing and dynamic
availability properties of Nakamoto-style protocols.

2012 ACM Subject Classification Security and privacy — Cryptography

Keywords and phrases Blockchain, Settlement, Longest-Chain Consensus


mailto:christian.badertscher@iohk.io
mailto:sandro.coretti@iohk.io
mailto:peter.gazi@iohk.io
mailto:aggelos.kiayias@iohk.io
mailto:alexander.russell@iohk.io

Adaptively Secure Fast Settlement with Dynamic Participation and Self-Healing

1 Introduction

The development of blockchain protocols since the inception of Bitcoin in 2008 has led to
various different designs that differ in their core security assumption, level of resilience in
view of low participation or temporal adversarial dominance, as well as in their operational
performance metrics such as latency and throughput. The choice of design therefore is a
tradeoff across a complex set of dimensions that interplay.

Longest-chain consensus, also referred to as Nakamoto-style consensus in honor of the
pseudonymous inventor of Bitcoin, is a permissionless design where parties are participating
in a lottery, be it proof-of-work or proof-of-stake, in order to append the next block to the
longest chain. The longest chain has the property that there is a common prefix forming,
i.e., while the most recent blocks might be transient, the more confirmations a block receives
by means of blocks building on top of it, the less likely it will ever be reverted again. The
probabilistic and gradual finality that Bitcoin put forth was novel and set it apart from more
traditional approaches where finality was seen as something absolute such as in the literature
on byzantine fault-tolerance. From an operational viewpoint, block production in Bitcoin,
and in its proof-of-stake counterpart Ouroboros, cannot be too fast in relation to the network
delay as security is derived from the fact that lottery successes are rare events on the scale
of block propagation times. In Cardano, expected block time is 20 seconds, in Bitcoin 10
minutes which impacts both latency and throughput.

The unique benefit of longest-chain consensus, established formally over a sequence of
works, is that it satisfies three important robustness properties simultaneously: safety and
liveness under dynamic availability, self-healing, and the ability to bootstrap from Genesis. In
more detail, longest-chain consensus remains live and safe under dynamic participation, which
means the blockchain’s grwoth (and also confirmation times) depends on the participation
level. The common-prefix property is satisfied as long as the majority of active participants’
resources (measured as hash-power for Bitcion or stake in Cardano). At the same time, even
if an attacker, due to say low honest participation, is holding the majority of active resources
for some period of time, the protocol is able to return to normalcy after the period has
come to an end. While this guarantee with an a priori unlimited attacking duration is true
only for longest-chain PoS with static stake, the self-healing guarantee for dynamic-stake
(multi-epoch) PoS remains intact if the attack duration is contained in an epoch. Stated
differently, given a desired level of robustness against majority attacks, one can parametrize
the protocol to satisfy self-healing. Finally, the longest-chain consensus protocols come with
a clear set of rules such that newly joining participants can determine the “best chain” with
knowledge of only the genesis block. Hence, no checkpointing of recent blocks is needed.

While the security is unmatched, the operational metrics, especially finality, is impacted.
While longest-chain consensus allows for user-defined finality, for a very high-assurance that
a payment cannot be reverted, one should wait several hours as a lot of confirmations need
to build up. This brings us to the core question of this work:

Is it possible to speed up confirmation times in longest-chain consensus while retaining
all of the above robustness properties?

The importance and relevance of this question stems from the fact that the properties
appear contradictory at first sight: while traditional byzantine fault-tolerant (BFT) protocols [4,
10] and blockchain protocols based on those BFT-techniques like Jolteon [14] or Algorand [5]
are in theory able to finalize a block at network speed by achieving a quorum, there is to
date no standalone iterated-BFT-based blockchcain protocol that is able to both, adjust
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the quorum size to the actual participation level, in order to make progress under dynamic
participation such as the recent work by Malkhi et al. [16], while at the same time be able to
recover from a situation where the honest active participants are in minority. The reason
is that this fundamentally requires the algorithm to be prepared to resolve two conflicting
finalizations, which implies the algorithm cannot have been in a univalent state with certainty
in the first place. This puts Nakamoto-style consensus with its probabilistic guarantees in a
better place to achieve the above properties simultaneously. We note in passing and explain
in detail further down below in Section 1.2, even solutions where a BFT-protocol is run as
an overlay over a Nakamoto-based blockchain like Afgjort [9], the same issue arises if the
finality established in the overlay protocol has precedence over the longest-chain rule.

1.1 Our Results

We answer the above question in the affirmative in this work and present Ouroboros Peras,
a longest-chain PoS protocol. In comparison to its predecessors, it effectively introduces a
parallel process that tries to boost selected blocks from the longest chain and thereby giving
them an advantage in the Nakamoto-race. To achieve this, blocks no longer weigh equally
(a concept we know from Bitcoin already), but we switch to a weight-based view of blocks:
an ordinary block has unit weight, while a boosted block gets an additional weight of B,
where B is a configurable parameter. However, in stark contrast to previous designs that
introduced “finality overlays” over longest-chain consensus protocols, we don’t overwrite
the basic Nakamoto-logic: participants shall always follow the longest chain and a block is
settled if it is buried under sufficient weight. In this way, we are not only able to re-establish
the standard common-prefix guarantee under honest majority in the dynamic participation
model, but we can further support a weight-based bootstrapping method for newly joining
parties. On top of this, our design is self-healing as it is able to absorb dishonest-majority
attacks of a given strength by appropriately configuring the parameters.

We provide a thorough formal security treatment of the new protocol that turns out to
be highly technical. Although our boosting gadget works at a high level as simple as voting
for a preferred block, reminiscent of previous attempts that we survey in Section 1.2, this
additional votes interfere with the “plain” Nakamoto-execution in a non-trivial way. Hence,
while intuitively, a block with high support gets indeed boosted, our formal statements must
ensure that the votes cannot be abused in either boosting only adversarial chains, or waste
honest participants’s slots on chains that are inferior to the heaviest chain. In fact, this is
the reason why we allow our boosting gadget to “cool down” for a while when failed boosts
are observed. This is critical to establish safety and liveness for the combined overlay, since
failed attempts to boost blocks might play in favor of the adversary.

1.2 Related Work

In the academic literature, the task of boosting the finality guarantees of a Nakamoto-style
blockchain has been considered in a sequence of papers that date back to Thunderella [19],
Polkadot’s Grandpa protocol [20], Casper [3], as well as Afgjort [9]. The overarching idea
of this sequence of works is that in a typical, real-life execution, the actual common prefix
of the underlying Nakamoto-chain is actually much longer than what the security analysis
indicates—in which case the finality gadget’s task is to identify this common prefix and to
finalize it. We detail the comparison to each class of protocols below.

A second, seemingly related line of work are the Ebb-and-Flow protocols [17], which,
however, do not aim at finalizing the Nakamoto-chain, but at combining different security
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guarantees in one protocol. An Ebb-and-Flow protocol thus provides the user with an
adaptive choice of what level of finality they seek in an application, such as picking either
a safety-first approach (and essentially don’t observe a reverted transaction ever even if
the network turns bad), or go with a liveness-favoring rule with a probabilistic guarantee
a la Nakamoto, where transactions could get reverted in case of network disruptions. In
our comparison below, we focus mainly on the the finality-gadgets that strive to boost
finalization times of Nakamoto-blockchains, but include relevant works of hybrid consensus
and checkpointing gadgets too.

Afgjort finality layer. Afgjort’s approach is to let a committee-based BA protocol try to
reach agreement on which block in the common-prefix has high support. If successful, the
block is declared as final and the chain-selection rule of the Nakamoto-blockchain is changed
to comply with that decision, i.e., any blockchain gets invalidated that does not go through
finalized blocks. This design choice has two implications that we rectify with our solution:
first, changing Nakamoto chain-selection to alway comply with finalized blocks implies that
any equivocation from the finalization committee—due to adversarial dominance which is
not an extremely unlikely event for those committee sizes occurring in practice—leads to a
permanent split of parties, rendering the combined protocol into a protocol that only tolerates
a corruption threshold of 1/3, and new features would be needed to return to normalcy after
the assumption is violated. The second implication is lack of resilience against dynamic
participation: if the finality gadget is stalled for an extended period of time due to committee
members being temporarily unavailable, the underlying Nakamoto-chain would still grow
substantially. However, if the committee members come back online, there is the risk that
they finalize an old block that is actually not on the common prefix of parties running the
Nakamoto-chain. Since the design favors the finalization block, a large portion of the chain
will be reverted even in a setting without a dishonest (relative) majority, which appears
undesirable.

In contrast to their solution, our solution does not over-rule the Nakamoto-chain. Our
solution tries to selectively boost the weight of blocks—giving them an advantage to win—
but the final call is done by the Nakamoto-blockchain. We retain the honest majority
threshold from the underlying blockchain, and further inherit the self-healing guarantees [2].
Furthermore, if our voting committee gets stalled, our gadget gets temporarily turned off for
sufficiently long, such that a very late-finish of a previous voting attempt would not lead to
a reorganization of the chain, since the weight they contribute is too little to catch up with
the longest chain at that time.

Grandpa finalization gadget. Grandpa is an elegant idea for finalizing blocks of an
underlying Longest-chain protocol. The idea is that parties in the finalization committee vote
for the tip of their longest chain. Votes apply “recursively” and the collection of all votes can
be used as an indicator on which blocks in the blocktree are supported by what fraction of
the committee. If a block crosses a threshold, it will be marked as final and the longest-chain
protocol complies with that decision in its chain selection rule as above. Note that voting
always succeeds under full participation due to the common-prefix guarantee of the underlying
blockchain. In comparison to Grandpa, our solution removes two specific concerns: first, as
in the case of Afgjort, the protocol overwrites the longest-chain chain selection rule, which
downgrades the protocol to 1/3 security, the threshold of the finality layer, and once violated,
the blockchain would fork permanently without additional intervention. Second, Grandpa
assumes full participation, and it appears that under temporal drop of participation, the
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protocol risks of getting stalled. Furthermore, in such a situation, it is up to the adversary to
release votes to resolve the situation. However, at this point, the adversary has the power to
tip the scales adaptively to decide whether an “old block” is finalized (which always exists)
or a “recent block”. This is a danger to chain quality, as the adversary is given enough slack
to adaptively discourage honestly generated blocks and wait to finalize adversarial blocks in
a next round.

In contrast to that, our solution does not have the above disadvantages. In addition
to the above comparison with Afgjort, our approach does not admit such a slack to the
adversary since votes are bound to a block. Furthermore, as in Grandpa, in the optimistic
case, the finalization rounds are at least as fast as chain-growth, and in case of failed vote,
we retain at least the chain quality of the Nakamoto-Blockchain. More broadly speaking,
our overall protocol retains security under fluctuating and low participation.

Thunderella and hybrid conesnsus. Hybrid consensus [18] and the related blockchain
protocol Thunderella, is a closely related notion to the concept of finality gadgets. The
main conceptual difference between finality gadgets and hybrid consensus is that a finality
gadget is trying equip the blockchain protocol itself with a fast (and optimistic) path to
settlement, but the blockchain remains the only ledger, without the need to sanitize the
potentially different views of the fast and the slow settlement method [17]. However, when it
comes to concrete techniques used, the two problems also share similarities and a finality
layer can typically be understood as providing some sort of hybrid-consensus, however, not
producing their own blocks, but using existing blocks from the Nakamoto-chain. If finality is
reached for a block on the Nakamoto-chain, this block can further be used to bootstrap a
new committee, and no dependency on the worst-case settlement of the blockchain arises
from committee selection [9].

When it comes to the security model, our solution and Thunderella share a few similarities
and a couple of differences. First and foremost, our design does not use a public leader
scheduled and is designed with full adaptive security in mind. While Thunderella could
switch to an adaptive security model, this would include rotating leaders and necessarily
trigger a cool-down when a malicious leader is speaking which is proportional to the actual
corruption threshold. In contrast, our solutions comes with a set of parameters that allows
to make an informed tradeoff between the probability of actually cooling down (when the
system is up and running against an adversary of a certain strength) and the settlement
speed perceived by a transaction on the optimistic path.

Casper, Ebb-and-Flow, Goldfish. Casper [3] is presumably the first finality gadget proposed
tailored to the Ethereum blockchain and based on a public committee that locks coins in
order to be eligible to assist in finalizing (non-recent) blocks of an underlay chain, and
in this regard belongs to the category of checkpointing layers, more formally known these
days as Ebb-and-Flow protocols [17]. Such a layered approach ensures that the blockchain
protocol maintains two ledgers: the dynamically available ledger (LMD GHOST in case of
Ethereum, or some other longest-chain protocol [17, 6]), and the accountable ledger which
is a finalized prefix. To obtain a provably secure combination for the two-layer approach
taken by Ethereum, Goldfish has been presented as a provably secure underlay following the
LMD-GHOST approach. What makes Goldfish interesting in our comparison is that it does
not only offer what is called standard k-deep confirmations of a prefix (against an adaptive
adversary), but it contains an optimistic fast path to confirmations under good participation,
honesty, and network conditions. While, of course, Goldfish is a consensus protocol on its
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own, and not an overlay over a Nakamoto-blockchain, it is interesting to observe some of the
features that do make its approach not directly applicable to our setting due to our goal of
achieving self-healing and bootstrapping from Genesis. First, the protocol, and extensions of
it [7], are based on a short-term view of votes (i.e., votes expire) in a such a way that if the
set of unexpired votes is not dominated by a (relative) honest majority, this would lead to a
protocol failure. Second, the Goldfish design does not specify a boostrapping mechanism
solely based on the Genesis block (under stake shift) and it remains open how to achieve it
under the security model put forth in those papers.

Tezos. Due to the techniques used in our work, it is worth mentioning that the act of
voting for a proposed block can also be used in other contexts for related but essentially
different reasons. The Tezos blockchain ' uses votes as indications of support, which allow
a next block producer to publish a block quicker, thereby reducing blocktime. We note in
passing that other uses of votes for blocks have been proposed in Tezos for scalability reasons,
which culminated in the above mentioned approach.

2 Notation and Model

Basic notation. For a string w = w; ... wy € 3V we denote by W] = W1 ... wg its prefix
of length k. We denote by e the empty string.

Time. For convenience, we model time as progressing in discrete steps called slots indexed
with natural numbers N = {1,2,...}.

Network. We adopt a traditional network model for the analysis of distributed algorithms
characterized by a single parameter A; the model guarantees that whenever an honest node
sends or receives a message m in slot s, any other honest node receives m no later than at
the beginning of slot s + A + 1. For convenience, and in keeping with previous work, we
assume that parties diffuse full chains in this manner; of course a practical implementation
would optimize message length by strategically trasmitting only those blocks necessary to
catch up a peer. Note that whenever a message m is injected for diffusion, the adversary
is activated who may deliver it to other honest parties at any time subject only to the A
restriction. (Note also that adversarial blocks may be delivered with arbitrary delays.) Thus
the model provides no guarantee of common serialization.

Protocol executions. Given a consensus protocol II, an environment Z and an adversary
A, we define an execution as the random variable that contains the sequence of states of
all activated parties in every slot. The environment Z activates a party by providing some
transactions to be processed as well as the index of the current slot; it also activates the
adversary A which is assumed to be activated always at the beginning of a slot before other
parties are activated as well as after all parties have been activated in a slot. Note that
the environment advances slots in a monotonically increasing manner, i.e., once a party is
activated at slot i, all other parties will also be activated in slot ¢ or larger. Parties use
the network and the clock functionalities and terminate their activation by performing any
updates dictated by II in their internal state which is assumed to defined a transaction ledger

Y https://tezos.com/
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data structure that is in the form of a chain of blocks of transactions. Specifically, each
party’s state contains a chain C' that is a sequence of blocks B, where each B is a sequence
of transactions txitxstxs.... The length of the chain is the number of blocks it contains. All
valid chains are assumed to share the same genesis block By = G as a common prefix. The
adversary, besides interfering with message delivery, can also corrupt parties by issuing a
special corruption instruction at any time during the execution. Once a corruption takes
place, the adversary is activated instead of the party and has access to the internal state
of the party. Given any execution it is possible to map it to a string which determines the
number of honest and adversarial parties that have been activated.

Consistency and Liveness. In each slot, every party outputs (C’, C), where C’ is the part
of C' that it considers “settled.” These chains must satisfy consistency and liveness. These
are defined via the following adverse events:

Consistency failure is a predicate ConsFail(¢y, ¢5) defined for two slots £; < ¢5 that is true
if and only if there is an honest party in slot ¢; that outputs a chain C{ and (a) the same
honest party in slot ¢ outputs a chain C} that is not a prefix of C] or (b) the same or
a different honest party outputs a chain C} in slot ¢5 such that neither C'| nor C} is a
prefix of the other.

Liveness failure with parameter u is a predicate LiveFail, (¢) for a slot ¢ that is true if and
only if a transaction tx was given for inclusion by the environment to all honest parties
for u slots starting at slot ¢ but some honest party in slot £ 4+ u outputs C' that does not
contain tx.

» Definition 1. A blockchain protocol I1 satisfies consistency and liveness with error €con and
ey respectively if and only if for any L polynomial in security parameter k, the predicates
ConsFail(¢1,¢3) and LiveFail,(£) for any €,¢1,¢5 < L hold with probability €con and €y
respectively.

Self-healing. Given a protocol execution, a function resrc(¢) returns a pair in R? that
represents the amount of “resources” controlled by the honest parties and the adversarial
ones. We denote resrc* and resrc* the resources of honest and adversarial parties respectively.
A “spike” occurs in a slot when by = resrc(¢) —resrc™ (¢) > 0. A spike-attack is a consecutive
sequence of slots [s;, s,,] where this condition holds. We note that in this paper, we consider
this situation as arising due to fluctuating participation, as a consequence of very low
honest participation resulting in a relative majority for the adversary, but not in an absolute
(adversarial) majority w.r.t. the underlying resource.

On the other hand, we say that the honest parties have advantage § > 0 in a slot £ when
(1—&)resrc™(¢) > resrc(¢). A protocol is said to satisfy self-healing with budget B provided
that there exists a time window v(B) such that, relative to the attack window [s, s], the (i)
protocol satisfies consistency and liveness except possibly during rounds [s; —v(B), s, +v(B)],
(if) Zfzsl b; < B and (iii) for any ¢’ > s, it holds that the honest parties have advantage ¢.
This captures that except in a contained region of the execution, the protocol enjoys the
normal safety and liveness properties. As shown in [2], when different attack regions are
sufficiently far apart, this definition applies to an execution with multiple spikes that can be
treated in isolation.
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3 The Peras Protocol

3.1 Main ldea

The Peras protocol is a proof-of-stake, Nakamoto-style blockchain with a voting component
designed to expedite settlement in scenarios where there is an optimistic overlap, namely
when parties share a lengthy common prefix and their chains diverge only near the end.

Approach. Participants vote on the tip of the chain that results from excluding all blocks
that are newer than a specified number of L slots. If, as a result of this voting, a single block
receives more than a designated threshold 7 of votes—earning what is termed a “certificate”—
that block is awarded additional weight B, a boost (where the standard weight of a block
is 1). Correspondingly, parties now pick the heaviest rather than the longest chain.

The threshold 7 is set high enough to prevent multiple blocks from receiving this boost.
Specifically, 7 is chosen to be 3/4 of the total votes, based on a standard quorum intersection
argument against an attacker controlling a fraction o < 1/2 of the stake.?

However, in such a regime, honest parties cannot independently produce certificates
since the threshold is above 1/2. Further, even if the threshold were lower, it would be
possible for the distribution of honest votes to be such that no single block achieves the
threshold with only honest votes. This opens the possibility for the attacker to execute
“certificate-up-the-sleeve” attacks by withholding adversarial votes needed for a block to
meet the threshold and releasing them only after honest parties have constructed a standard
length-B Nakamoto chain that excludes the boosted block. This strategy can lead to two
chains of equal weight diverging by weight B. By repeating this tactic, the attacker can
create a fork of arbitrary weight, thereby compromising the protocol’s safety.

Cooldown periods. To counteract these risks, the Peras protocol employs a structured
voting process with rounds of a fixed length U. If no certificate is generated within a voting
round, the protocol initiates a cooldown phase during which voting is temporarily suspended.

During the initial “healing-and-certificate-inclusion” phase of the cooldown period, parties
continue with standard Nakamoto block creation until the potential advantage of B that the
adversary could gain with a certificate is neutralized. Simultaneously, parties are required to
submit the latest certificate they are aware of to the chain. Moreover, there is an age limit
for the inclusion of certificates during this phase. In the second phase, parties wait until
the blocks from the first phase have stabilized. Together with the age limit for certificate
inclusion, this guarantees that parties use the most recent certificate on the chain as an
anchor to achieve consensus on when to resume the voting process, thereby preventing the
adversary from exploiting any undisclosed certificates to cause further desynchronization.

Note that there is a tradeoff between the speed of settlement and the duration of the
cooldown period. Specifically, the larger the value of B, the quicker the settlement process
can potentially occur. However, a larger B also necessitates a longer cooldown period, as the
the length of the healing phase is directly related to B.

2 Throughout this paper, it is assumed that the majority of every committee is honest. This can be
approximated (except with negligible probability) by choosing parameter so that committees are large
enough).
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3.2 Protocol Description

The protocol is outlined in Figure 1 and it builds on top of the Ouroboros Protocol as in [1],
which we refer the reader to for concepts like slot leadership or the definition of forward-secure
signatures.

Blocks. The protocol structures time into equal-length intervals known as slots. During
each slot, participants elect themselves as leaders using a standard VRF-based local sortition
mechanism. A leader is tasked with extending the heaviest chain they are aware of with
a new block B. Each block B is a tuple represented as B = (s, P, h, cert, 7, p, o), where s
indicates the slot index in which the block was produced, P identifies the slot leader who
produced the block, h is the hash of the block’s parent, cert is a certificate (further explained
below), 7 is the proof of slot leadership, p is the transaction data, and o is a signature by P
on the rest of B.

A chain is a non-empty sequence of blocks linked by hash pointers, beginning with a
distinguished genesis block G. The length of a chain, denoted len(C), is equal to the number of
blocks in the chain, excluding the genesis block. Cgenesis denotes the unique chain containing
only the genesis block G.

Voting rounds and committees. Building on the intuition above, the protocol also segments
time into voting rounds (or simply rounds), each comprising U slots. These rounds are
sequentially numbered r = 0,1, 2, ..., and voting round r corresponds to slots

rUrU+1,rU+2,....,(r+ 1)U —1.

No votes are cast in round 0, which is successful by definition.

The function rnd(s) := |s/U| determines the round to which a given slot s belongs, while
lastSlt(r) := (r + 1) - U — 1 denotes the final slot of round r.

In each voting round r, a committee C, is selected, again through VRF-based sortition,
with the protocol parameter S dictating the expected committee size. Each committee
member is permitted to cast a single vote during their respective voting round.

Votes and Certificates. A vote is a tuple v = (r, P, h,7,0), where r is the index of the
voting round the vote belongs to, P identifies the voting-committee member casting the
vote, h is a hash of the block voted for, 7 is the committee-membership proof, and o is a
forward-secure signature by P on the rest of v.

A certificate is a collection of votes from a single voting round, from at least a 7-fraction
of the expected committee size, and supporting the same block. In other words, a certificate
contains 7 - .S votes for the same block from the same voting round. At the beginning of the
cooldown phase, a party will include the latest certificate they know of in the blocks they
create (unless some other party has already done so). There is an age limit A for certificate
inclusion in order to ensure that by the end of the cooldown parties have agreement on which
the latest certificate on the chain is.

Chain weight. FEach party P assigns a certain weight to every chain C, based on C’s length
and all certificates that vote for blocks in C' that P has seen so far (and thus stored in a local
list Certs). Let certCountp(C) denote the number of such certificates, i.e.,

certCountp(C) := |{cert € Certs : cert votes for a block on C}| .
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Parameters: U: round length; A: certificate expiration age; R: length of chain-ignorance
period; K: length of cooldown period; L, D minimal and maximal lookback parameter for voting
candidates; Tcs time-based settlement parameter.

Variables: The protocol keeps track of the
following variables, initialized to the values
below:

Coref < Cgenesis: preferred chain;

C < {Cgenesis }: set of chains;

V + 0: set of votes;

Certs < ): set of certificates;

cert’ Certgenesis: the latest certificate seen;

cert™ <— Certgenesis: the latest certificate on
chain.

Fetching: At the beginning of each slot:
1. Fetch new chains Cpew and votes View-

2. Add any new chains in Cpew to C, add any
new certificates contained in chains in Cpew
to Certs.

3. Add Vhew to V and turn any new quorum in
V into a certificate cert and add cert to
Certs.

4. Set Cpref to the heaviest (w.r.t. Wtp(+))
valid chain in C.

5. Set cert’ to the certificate with the highest
round number in Certs.

6. Set cert™ to the certificate with the highest
round number on Ciyef.

Block creation: Whenever party P is slot
leader in a slot s, belonging to some round 7:

1. Create a new block
B = (s,P, h,cert, 7, p,0), where

h is the hash of the last block in Cpyer,

cert is set to cert’ if

a. there is no round-(r — 2) certificate
in Certs, and

b. r — round(cert’) < A, and

c. round(cert’) > round(cert*),

and to L otherwise,

7 is the slot-leadership proof,

p is a transaction payload, and

o is a signature by P on the rest of B.

2. Extend Cpyres by B, add the new Cpyrer to C
and diffuse it.

Voting: Party P does the following at the
beginning of each voting round r:

1. Let B be the youngest block at least L slots
old on Ces but at most D slots old. If no
such block exists, exit this procedure.

2. If party P is (voting) committee member in
a round 7,

(VR-1A) round(cert’) = r — 1 and cert’ was
received at least A before the end of
round r — 1,

and

(VR-1B) B extends the block certified by

cert’,
or

(VR-2A) r > round(cert’) + R,

and

(VR-2B) r = round(cert™) + c¢K for some
c >0,

then create a vote v = (r, P, h, 7, o), where
h is the hash of B,

7 is the slot-leadership proof, and
o is a signature on the rest of v.

Add v to V and diffuse it.

Chain output: In each slot, output (C, Cpref),

where C' is obtained as follows:

1. Let p € {0,1}" be a string such that p; =1
if and only if a round-i certificate has been
seen (locally).

2. Let ¢ be the maximum such that

(1) ¢+ D is followed by at least [Tcs/B]|
complete rounds 7 with p; = 1
or
(1) ¢ is followed by at least Tcs + K
complete rounds ¢ with p; = 0.

3. C is Cprer with all blocks after ¢ pruned.

Figure 1 The Peras Protocol.
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Then, the weight of the chain C' in P’s view is
Wtp(C) :=len(C) + B - certCountp(C)

for a protocol parameter B. At any time, the preferred chain of a party is the heaviest chain
they know of.

Voting rule. In each voting round r, committee members from C(r) cast a vote for the
oldest block B with age between D and L on their preferred chain if and only if the following
composite condition is met (if there is no such block, no vote is cast):

(VR-1A) A (VR-1B) Vv (VR-2A) A (VR-2B) ,
where

(VR-1A) P has seen a certificate cert,_1 for round r — 1 within the first A slots of round
r—1,

(VR-1B) B extends the block certified by cert,._1,

(VR-2A) the last certificate P has seen is from a round at least R rounds back, and

(VR-2B) the last certificate included in P’s current chain is from a round exactly cK
rounds ago for some integer ¢ > 0.

The intuition behind this voting rule is as follows: Rule (VR-1A) serves as the primary
criterion for deciding whether an ongoing fast-settlement phase continues in the current
round: a committee member participates in the current round only if they have observed a
certificate from the previous round, received A before the end of the round.? Rule (VR-1B)
ensures that certificates from consecutive successful voting rounds are built upon one another,
which is essential for accelerating settlement: only if this is the case, will each successful
voting round following some block B add the additional weight B to B.

To comprehend the remaining two rules, consider the scenario where the first two
conditions are false, indicative of a cooldown period: Rule (VR-2A) prohibits committee
members from using the chain to identify an anchor certificate during the initial R rounds
of the cooldown, where R is a predefined parameter. This restriction is necessary because
the blockchain might be in a state of disarray during this first phase of cooldown, due to a
potential certificate up the adversary’s sleeve. Finally, Rule (VR-2B) is the actual restart
condition: a restart occurs cK rounds after the round number of the latest certificate on
chain, for some ¢ > 0. The reason for considering values ¢ > 1 as well is that there may be
restart rounds that do not lead to a certificate (followed immediately by another cooldown),
and therefore the certificate with the highest round number on chain might be form 2K, 3K,
etc. rounds ago.

Chain output. In every slot, parties cut off weight W from their preferred chain and output
the resulting chain. This cutting off occurs by gradually removing blocks, including their
certificates, until weight W has been removed.

3 The main reason for the A-requirement is that it simplifies the analysis somewhat.

11
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Parameters. The above suggests the following parameterizations for Peras, where Ty
and T¢s are parameters chosen for the Nakamoto protocol to provide healing from a failed
voting round, ensure the presence of at least one honest block, and achieving settlement,
respectively.

U > 5A (in slots): voting round length.

A = Tyq (in rounds): certificate expiration age.

The < R < K — 2 (in rounds): length of chain-ignorance period.
K > Tye) + Tes + 1 (in rounds): length of cooldown period.

4 Protocol Analysis

4.1 Lotteries and Characteristic Strings

Two independent randomized party-selection procedures play important roles in our protocol;
we call them lotteries. The first lottery, referred to as the leader lottery, selects for each
slot a collection of slot leaders that are allowed to create a block in that slot. The second
lottery, called the wvoter lottery, selects committee members (i.e., voters) for each voting
round. Both of these lotteries are implemented using standard private sortition methods [5].
The leader lottery is parameterized so that the expected number of elected slot leaders
is a small constant and, in particular, is relatively likely to generate a slot with a single
leader; this determines the dynamics of the Nakamoto consensus process. The voter lottery
is parameterized to generate a larger committee used for the fast settlement process.

We use so-called characteristic strings to indicate a summary of the outcomes of these
two independent lotteries. In particular, we use a leader string and a voting string to record
the outcomes of the leader and the voter lottery, respectively; as detailed below.

Leader string. The leader lottery is reflected by the leader string over the alphabet ¥ = NxN;
specifically, an execution over N slots gives rise to a leader string w = wy ... wx € XV where,
intuitively, each symbol w; = (h;,a;) € ¥ indicates that h; honest parties and a; adversarial
parties were eligible slot leaders for slot i.

For a leader string w = w; ... w, € X" where each w; = (h;,a;) € N x N, we define
#n(w) := >i_ | h; and similarly #,(w) := Y., a;, i.e., the total number of honest and
adversarial slot leaders over a sequence of slots corresponding to w. Moreover, we sometimes
make use of a similar quantity #,(w) that denotes the number of symbols in w with positive
second coordinate, i.e.,

F#a(w) :=[Hie{l,...,n} : w; N x {0}}] .

Similarly, let
#[ha](w) ={ie{l,...,n} : w; #(0,0)} .

Voting string. The outcome of the voter lottery is captured by a wvoting string. A voting
string is a string 0 = o102... € {0,7,1}*, with implicit understanding that oy = 1 represents
the genesis round, and for ¢ > 1,

1 if at least one party saw a round-i certificate before the end of round 1,
o; = (7 elseif at least one party voted in round 4,

0 otherwise.
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We sometimes refer to a round ¢ as an s-round if o; = s, for any s € {1,7?,0}.
We refer to leader strings and voting strings jointly as characteristic strings.

Executions. We say that a leader string w and a voting string ¢ have consistent duration if
rnd(Jw|) = |o|, and in such case we call the pair (w, o) an ezecution and |w| is its length in
slots. (Notice that the length of an execution in slots does not need to be an integer multiple
of U.) For an execution (w, o) with |w| = N and an index i € {0,..., N}, we denote by

(w,0)q = (Wi1, Orna(i)])

the prefiz execution covering the initial ¢ slots of (w, o). Conversely, we call the execution
(w,0) an extension of the execution (w, o).

4.2 Blocktrees with certificates

We now define a tree-shaped structure to capture important aspects of the execution of our
protocol. For a vertex v in a tree F, let descy(v) denote the set of all descendants (direct
and indirect) of v excluding v itself, and descy(v) := descp(v) U {v}.

» Definition 2 (Blocktree with certificates). Let (w, o) be an execution with |w| = N and
lo| = M, i.e., rnd(IN) = M. A blocktree with certificates for an execution (w,o) is a
directed, rooted tree F' = (V, E) with three labeling functions:

ly : V. — {0,..., N} where l4(v) is called the slot label of v and represents the slot in
which the corresponding block was created;

I : V. — 200 ME yhere | (v) is called the certificate label of v and records the set of voting
rounds in which the block corresponding to v was certified;

liype : V' — {h,a} where lype(v) is referred to as the type of the vertex: when lype(v) = h,
we say that the vertex is honest; otherwise it is adversarial.

Edges are directed “away from” the root so that there is a unique directed path from the root
to any vertezr, and the tree must satisfy the following axioms:
Time consistency:

(T1) the root r € V is honest and is the only vertex with slot label lx(r) = 0;

(T2) slot and certificate labels along any directed path are strictly increasing: for each v € V
and v’ € descp(v), we have lx(v) <lg(@') and c € l(v) A €1(Vv) = e < ;

(T3) for each v €V and r € I.(v), we have lx(v) < lastSlt(r — 1);

Block and certificate counts:

(C1) if w; = (hy,a;) then there are exactly h; honest vertices of F with the slot label i and if
the number of adversarial vertices with slot label i is nonzero then a; > 0;

(C2) if o, = 0 then there is no v € V with r € I(v), otherwise there is at most one such v € V;

(C3) if o, =1 and lastSlt(r — 1) + 1+ A < N then v € V: r € l.(v).

We write F + (w, o) to indicate that F is a blocktree with certificates for an execution (w, o).
As notational shorthands, we define

H(F) :={v eV : lype(V)=h} and
C(F):={re[M]: 3veV such thatr € l.(v)}

13
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to refer to the sets of all honest vertices and all rounds that produced a certificate, respectively.
For simplicity of notation, we assume H(F) NC(F) = 0. We write H (resp. C) when F
is clear from the context. We sometimes refer to an indexr ¢ € C as a certificate; this is
justified as each round produces at most one certificate (C2). We talk about a ?-certicate
(resp., 1-certificate) if o(c) =7 (resp., o(c) =1).

We will refer to blocktrees with certificates simply as trees when the context is clear.
Unless explicitly stated otherwise, in the rest of the paper we reserve the term “tree” for the
above structure, as opposed to the underlying graph-theoretic notion.

It is easy to see the correspondence between the above axioms and the constraints imposed
in the protocol execution. In particular, axiom (T1) postulates the existence of the genesis
block; axioms (T2)—(T3) guarantee the time-consistency of the execution, namely that
vertices and certificates only appear on top of earlier vertices and certificates. Axiom (C1)
captures that an honest party uses a leader-lottery success to produce exactly one block,
while the adversary might use it to produce arbitrarily many blocks (or none at all). Similarly,
axioms (C2)—(C3) maintain that the blocktree contains the correct number of certificates:
none for O-rounds, at most one for a 7-round, and exactly one for any concluded 1-round.

Looking ahead, we will formalize additional properties of blocktrees—that are guaranteed
to be satisfied by our protocol’s execution—in Definition 10. Towards that, we need to
establish some necessary notation.

» Definition 3 (Certified vertices). A vertez v is called certified if Ic(v) # 0, and in particular
v is called 1-certified if Ir € I(v): o = 1.

» Definition 4 (Subtrees and restrictions). Let F F (w,0), let execution (w',c’) be an
extension of (w,o0) and F' F (w',0"). We say that F is a subtree of F', denoted F C F', if
F is a subgraph of F' satisfying that for each v € F':

(1) v’s ly- and lype-labels are identical in F' and F'; and
(ii) v’s lc-label in F is a subset of its |.-label in F’;

In particular, a subtree F' is called a restriction of I to a slot s, denoted Fy, if

(i) F contains exactly all vertices v € F' such that lx(v) < s;
(ii) for each v € F, v’s |c-label in F is the intersection of its |.-label in F' with the set [s].

An individual blockchain constructed during the protocol execution is represented by the
notion of a chain, defined next.

» Definition 5 (Chains). A path in a tree F originating at the root is called a chain (note that
a chain does not necessarily terminate at a leaf). As there is a one-to-one correspondence
between directed paths from the root and vertices of a tree, we routinely overload notation
so that it applies to both chains and vertices. Specifically, we let len(T) denote the length
of the chain, equal to the number of edges on the path; hence len(v) also denotes the depth
of a vertex. We sometimes emphasize the tree F from which v is drawn by writing leng(v).
Likewise, we let 14 (-) apply to chains by defining | (T) = |4 (v), where v is the terminal
vertex on the chain T. We say that a chain is honest if the last vertex of the chain is honest.

» Definition 6 (Weight function). For a tree F' and a chain T in F we define the weight of
T in F as

wtp(T) = lenp(T) + By [lc(u)] ,
ueT
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where the sum goes over all vertices of uw € T. We overload the notation and define

wt(F):= max wtp(T).
T chain in F

Note that the weight function wt(-) is intended to model the function Wt(-) used in our
protocol (cf. Section 3), we maintain the notational distinction for clarity.

In the execution of our protocol, each action of an honest party—creating a block or
casting a vote—is implicitly justified by that honest party’s view: the set of blocks and
certificates it is aware of at the moment of taking the action. Intuitively, the honest party’s
action must be consistent with this view: it creates a block by extending the heaviest chain
it sees, or votes for a block lying on this chain. We make this notion of a justification explicit
in the following definition, and formulate the implied constraints as axioms in Def. 10, after
we define all the necessary tools to express them.

» Definition 7 (Justifications). Given a blocktree with certificates F F (w,0) and a slot
s € {1,...,|w|}, a justification J for slot s in F is a subtree of the restriction of F to
slot s — 1, i.e., J E Fy_17. When F is clear from the context, we write jslot(J) = s to denote
the slot for which J is a justification. We say that F is a tree with justifications if it is
equipped with two sets of justifications (Jy)pew(ry and (Je)eee(ry, where

for each v € H(F), Jy is a justification for slot 14 (v) in F'; and
for each ¢ € C(F), J. is a justification for slot lastSlt(c — 1) + 1 in F.

» Definition 8 (Propagation). Consider a tree F + (w, o) with justifications (J,)yen and
(Je)eec. We say that:

a justification J is propagated in F if jslot(J) < |w| — A;
a 1-certificate ¢ € C(F) is propagated in F if lastSlt(c — 1) + 1 < |w| — A.

» Definition 9 (Public subtree). Consider a tree F & (w, o) with justifications (Jy)yen and
(J.)eec. We denote by F the publicly known (or simply public) subtree of F, which is
obtained by the following procedure:

(1) Remove all vertices v with ly(v) > |w| — A and adjacent edges.
(i) For each remaining v, remove from l.(v) all ?-certificates and all unpropagated 1-
certificates.
(#ii) Iteratively remove all adversarial leaves (and adjacent edges) that are not 1-certified.
(iv) Add back all vertices, edges, and |.-labels that appear in any propagated justification.

» Definition 10 (Protocol-respecting trees). A blocktree F &+ (w, o) with justifications (Jy)ven
and (J.)cec is called protocol-respecting if it additionally satisfies the following azioms:
Block and certificate placement:

(P1) Each justification J satisfies Fjsiot(.1)—1)] & J-

(P2) Each honest vertex v extends a mazimum-weight chain in J,.

(P3) For anyv € V and any c € I.(v), v lies on a mazimum-weight chain in J.; and moreover,
l4(v) > lastSlt(c — 1) — D.

(P4) Any u,v € V such that Ir: r € lc(u) Ar+1 € l.(v) satisfy v € desc(u).

The axioms again have an intuitive interpretation with respect to our protocol: (P1)
requires that any justification—capturing the view of an honest block creator or an honest
voter—must contain the whole public subtree at that time. (P2) captures that honest block
creators extend a block that in their view (described by J,) extends a maximum-weight chain;
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(P3) postulates that any certified block must lie on a maximum-weight chain in some honest
view at the time of voting (described by J.), and must be ‘recent’ on this chain as enforced
by the protocol; and finally (P4) guarantees that certificates coming from consecutive rounds
“extend one another”, i.e., lie on a single chain.

In the rest of the paper, we will only be considering protocol-respecting trees (and often
referring to them as trees); the reason we defined this notion separately is to take advantage
of Definitions 3-9.

» Definition 11 (Dominant chains). Let T be a chain in a tree F'. We call T dominant in F

if wtp(T) > wt(F).

» Definition 12 (Branches). For an integer £ > 1 and for two chains T and T’ of a tree F,
we write T ~; T' if the two chains share a verter with a ly-label greater than or equal to £.
The set of all chains T' € F such that T ~, T' is called the branch of T in F' and denoted
Br(T;¢); when ¢ can be inferred from context, we write Bp(T).

Intuitively, T' ~, T" guarantees that the respective blockchains agree on the state of the
ledger up to time slot £. Looking ahead, the adversary can make two honest parties disagree
on the state of the ledger up to time £ only if she makes them hold two chains T £, T".

4.3 Analytic Quantities: Reach (p) and Margin (1)

» Definition 13 (Advantage, reach, margin). For a tree F'+ (w, o), we define the advantage
of a chain T € F as

ap(T) =wtp(T) — wt(F) ;
in particular, a chain T is dominant in F if and only if ap(T) > 0. We then define

p(F) = Jmax ap(T) and plw, o) = F'r_rg));) p(F)
and in both cases we refer to the quantity p(-) as reach (of F' and the pair (w, o), respectively).
For a given pair (w,o), we sometimes refer to a tree F' and a chain T mazximizing the
above exrpressions as a witness tree and a witness chain, respectively; note that these are not
necessarily unique.

Finally, we define the margin of F', denoted py(F), to be the “penultimate” advantage
taken over chains Ty, Ty of F' such that Ty oy To:

F):= max (mina Ty), ap(T: )
e (F) Ty {ap(T1),ar(T2)}
There might exist multiple such pairs in F', but under the condition £ > 1 there will always
exist at least one such pair, as the trivial chain Ty containing only the root vertex satisfies
To e T for any T and £ > 1, in particular Ty ¢ Ty. For this reason, we will always consider
we(+) only for £ > 1. We again overload the notation by defining

w,0) = max F).

pre(w, o) i e (F)

We use the terms witness tree and witness chains analogously also in the case of margin, it
will be always clear from the context whether we are referring to witnesses with respect to
reach or margin.
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In the analysis we make use of the honest depth quantity introduced in [12]. Intuitively,
the honest depth ha(x) of a string x captures the minimum growth of honest blockchains
over a period of slots corresponding to z, in the absence of any certificates. More concretely,
it is the minimum number of times during x that an honest slot leader must create a block
at a higher depth because it is guaranteed to “see” an honest blockchain at one depth lower
that was created at least A slots earlier.

» Definition 14 (Honest depth ha). For xz € {0,1}*, we define ha(x) inductively so that
ha(e) =0, ha(20) = ha(x), and ha(xl) = ha(za) +1. We in fact overload ha to apply to
strings from X* = (N x N)*, in which case symbols with non-zero first coordinate (i.e., from
((N\{0}) x N)* are counted as 1s, while symbols from ({0} x N)* are treated as Os.

4.4 Margin and Consistency

Intuitively, there is a natural connection between margin and settlement, which was formally
established for longest-chain protocols (for the appropriate definition of margin) in [15, 11];
we extend it to our setting with certificates below. This motivates our effort to upper-bound
e. (Cf. Section 2 for a definition of prune(-) and ConsFail.)

» Lemma 15 (Margin and consistency). Consider an ezecution (w,o) with w = w; ... wx
and 0 = 01 ...0ma(n)- Let B be a block produced in slot £ € [N], and let to > £ be such that
B is contained in some chain held by an honest party at time to. If for every t € {tg,..., N}
we have [ig ((w7o)ﬂ) < —B then B is contained in every chain C held by any honest party
at any time t € {to,...,N}.

As a consequence, let t* > £ be the earliest time such that B is contained in prune(C')
for some chain C held by an honest party P at time t* (i.e., P considers B settled at time
t*). If for every t € {t*,..., N} we have pe((w, o)) < —B then B will not induce the event
ConsFail during the execution.

Proof. Let F'+ (w,0) be the tree corresponding to the execution, and let T' be a chain in
F,,7 that contains B and is dominant in Fyj: such T exists by assumption, as Fj 7 describes
the execution up to time ty and honest parties only hold chains that are dominant.

The proof proceed by induction on ¢ € [tg, N]. For the base case, we first prove that at time
to, no honest party is holding a chain that does not contain B. Assume the opposite, namely
that an honest party is holding a chain T” at time ¢y and 7”7 does not contain B. The fact that
T" is held by an honest party implies that 7" is dominant in F} 7 and hence a o (T") > 0.
However, we also have ap, | (T) > 0 for the same reason, and moreover, since 77 does not
contain B, we have T «, T" by definition of 7£,. This implies u, ((w,a)to]) > pe(Fypp) 20,
contradicting the assumption of the lemma.

For the inductive step, assume that for some ¢ € [tg, N — 1] all dominant chains in Fj
contain B, and our goal is to prove the same is true for ¢t + 1. We consider two cases. First,
assume that wt(Fyy) = wt(F;;17). Then any dominant chain in Fyy is also dominant in Fy 47,
and contains B. Therefore, there exist dominant chains in F; ;7 that contain B, and as
above, the existence of a dominant chain not containing B would contradict the assumption
that p ((w,0)e417) is negative. It remains to consider the case wt(Fyi17) > wt(Fy)) + 1, we
argue that F; ;7 again cannot contain dominant chains that do not contain B. Towards a
contradiction, let T be such a chain, and let Tﬁ be its restriction to Fy;. Note that the
weight of T* could grow by at most B + 1 in slot ¢ + 1 (compared to T3 ), by obtaining at

17
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most one certificate and one block. Therefore, and since 7' is dominant in Fy 7, we have

pe (w,0)1) = pe(Fpy) > ar, (Ty) = wt(Ty) — wt(Fy)
> (wtp,,, (T) — B —1) — (wt(Fyy17) —1) = ap,,(T) — B> —B,

contradicting the assumption of the lemma as desired. |

Given the above connection between margin and consistency, in Sections 4.5-4.7 we state
and prove recurrences describing the evolution of margin (and the dependent quantity reach)
during the protocol’s execution.

4.5 Reach and Margin Recurrences during 1-Rounds

We start by studying the behavior of reach and margin during a period in the execution
of the protocol that takes the optimistic path. Namely, we look at a sequence of rounds
that lead to a successful and timely creation of certificates, as represented by a sequence of
symbols "1’ in the voting string.

» Theorem 16 (Reach and margin during 1-rounds). Fiz ¢ > 1. Let (w,0) and (wz,ol") be
two executions such that x exactly spans r- U slots corresponding to r > 1 voting rounds. We
have p(e,e) =0 and

plwz, o17) < max {p(w,0) — 1 B + #pa(2),  #p(@) + D+ A} .
Moreover, pp(wz,o1”) < p(wz,ol”), and if £ < |w| — D then

pe(wz,ol”) < p(w, ) =7 - B+ #pha)(2) -

4.5.1 Bounding Reach

We first establish a helper lemma that, informally speaking, lower-bounds the growth of the
weight of the public subtree during 1-rounds.

» Lemma 17 (Public tree growth). Let (w,0) and (wz,c1"™) be two executions such that
x spans r - U slots exactly corresponding to r > 1 voting rounds. Let F' b (wz,01") be a
protocol-respecting tree and let F T F’ be a restriction of F' to (w,c). Then we have

wt(F") > wt(F) +r-B.

Proof. For each i € {0,1,...,7} let F; denote the restriction of F’ to lastSlt(|o| + 7). Notice
that we have Fy = F and F,. = F’. Moreover, for each i € [r], let v; denote the vertex in F;_;
that becomes certified in round |o|+ 1, and let J; denote the corresponding justification, so we
have jslot(J;) = lastSlt(|lo|4+i—1)+1 and F;_; C J; C F;_1. Let T; be the maximum-weight
chain in J; that contains v;, as guaranteed by (P3).

First, notice that for each ¢ € [r — 1] we have

(a) (b)
wty, (117) < Wth‘,+1(Ti) —-B < WtJi+l (T%-‘rl) - B. (1)

To justify inequality (a), note that both T; and the certificate on v; appear in Fj, as they
were known to some honest party at the time the certificate was created and hence publicly
known A < U slots later; formally, both the justification J; and the certificate |o| + i € C(F;)
(T;) is at least wty, (T5)

are propagated in F; . Therefore, they also appear in J; 1, and wt,_,
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increased by the additional boost B provided by the newly added certificate. Inequality (b)
then follows since T;11 is maximum-weight in J;;1 and hence it is at least as heavy as any
chain in ﬁJrh and as argued above, T; appears in Fj;;.

To conclude the argument, we now have

(o) (d) (e)
wt(FY) < wty, (T1) < wty, (T) — (r—1)- B < wt(F,) —r- B. (2)

Here, inequality (c) holds since Fy C J; and T} is maximum-weight in J;. Inequality (d) is
an (r — 1)-fold application of (1). Finally, inequality (e) again holds as T} appears in F,., and
its weight has been increased since J,. by the final newly added certificate. Put together, (2)
establishes the lemma. |

We now employ Lemma 17 to establish an upper bound for reach during a period of
1-rounds.

» Lemma 18 (Reach upper bound). Let (w, o) and (wz,oT) be two executions such that x
and T span r - U slots exactly corresponding to v > 1 voting rounds. If T = 1" then

p(wz,o7) < max {p(w,0) — B + #pa(x), #a(x) + D+ A} .
Proof. Let F' F (wx,07) be a witness tree for p(-) and let 77 be a witness chain in F”, i.e.,
p(wr,o7) = ap (T") = wtp (T") — wt(F’) .

Let F' C F’ be a restriction of F’ to (w, o), let T be a restriction of 7”7 to F.
We now consider two separate cases, depending on whether 7" contains any vertices that
were certified in rounds corresponding to 7, i.e., whether

JveT : l(v)yn{lo|+1,...,lo7|} #0. (3)

Let us first consider the case that (3) is satisfied in F’. Let ¢ € [r] be the largest index
such that the certificate from round |o| + i certifies a block on 77. We have 7; = 1 and
lastSlt(|o| + i) < |wz|, hence the certificate, and the block it certifies, appear in F’ by
axiom (C3) and the definition of a public subtree. This in turn implies

ap (T') < #p)(x) + D+ A,
as T may, on top of the deepest certified block on it (which appears in F”), only contain

at most D vertices from slots corresponding to the last round of o (due to (P3));
at most #,)(x) adversarial vertices from slots corresponding to x; and
at most A honest vertices from z that do not appear in F”.

This concludes the proof of the first case.
Now consider the case where (3) is not satisfied in F”, i.e., there is no certificate associated
with a round described by 7 and certifying any of the vertices on T". Based on that, we have

WtF/(T/) < WtF(T) + #[ha] (iE) R (4)

as the weight of T” grows on top of the weight of T only due to any additional vertices in
T'\ T. On the other hand, we can lower-bound wt(F’) — wt(F) using Lemma 17, getting

wt(F') > wt(F) +rB . (5)
Inequalities (4) and (5) then together imply
p(wz,o7) < p(w, ) = 7B + #pha) () ,

concluding the proof for this case as well. <
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4.5.2 Bounding Margin

Towards bounding the quantity pe(-), first observe that its definition directly implies that
pe(w,o) < p(w,o) for any execution (w,o). Moreover, for any (w,o) with |w| < ¢, we
actually have py(w,o) = p(w, o) as, recalling the definition of u(F) and the relation g,
notice that any chain T" with |4 (T") < ¢ satisfies T 7, T', and hence the witness chains 77, Ts
for pe(F) may satisfy Ty = Ts.

We now proceed to prove an upper bound on pig.

» Lemma 19 (Margin upper bound). Let (w,o) and (wx,ol"™) be two executions such that x
spans r - U slots exactly corresponding to r > 1 voting rounds. Fix { < |w| — D. Then

pe(wz,o1") < p(w, o) — 1B + Fpa) () -

Proof. Let F' I (wx,07) be a witness tree for p,(-) and let T} 74, Ty be a pair of witness
chains in F’ such that ap/(T7) > 0 and ap (T7) > ap (Ty) = pe(wz,c1"). Let F C F' be a
restriction of F’ to (w, o). Let Th,T5 be restrictions of T}, T4 to F, respectively. Observe
that Lemma 17 gives us wt(F’) > wt(F) + rB.

Let R = {|o| +1,...,0 + r} denote the indices of the final » 1-rounds in (wz,c1"). By
axiom (P4) we know that all certificates corresponding to rounds in R appear on the same
chain, and by axiom (P3), each of them certifies a block belonging to a slot from round
|w| — D or later. Hence Ty ¢ T4 together with the assumption ¢ < |w| — D implies that at
least one of the chains 77, T4 contains no vertices certified in these rounds. We now consider
these two cases separately.

If T} contains no certificates from rounds in R then we immediately have
wtp (Ty) < wt(F) + #na () , (6)

as the weight of T5 only grows during the rounds in R by added vertices, and there are
at most #ha () of them. Combining Lemma 17, (6), and the fact that p(w,o) > p(F) =

wt(F) — wt(F) for any blocktree F F (w,0), we get

ap (Ty) = wtp: (Ty) — wt(F)
(WE(F) + #ha) (@) — (Wt(F) +B)
p(w, o) —rB+ #pa(z)

we(wx,ol”)

IN N

concluding the proof for this case.

On the other hand, if 7] contains no certificates from rounds in R then

wtpr (T7) < Wt(F) + #ha) () < WEHF) + p(F) + #ha) (2)
< wt(F) + p(w, 0) + #ha)(z) (7)

and, again using Lemma 17,
wtp (1) = pe(F") +wt(F7") > po(F') + wt(F) +rB = py(wz,o1”) + wt(F) +rB. (8)

Combining (7) and (8) and considering that by choice of 7], T4 we have wtp: (T7) > wtp: (Ty)
concludes the proof also for the second case. <
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4.6 Reach and Margin Recurrences during 0-Rounds

We now turn our attention towards rounds that do not lead to timely certificates, and are
represented by ’0’-symbols in the voting string. This corresponds to the cooldown periods,
and intuitively, in these periods reach and margin behave analogously to an execution of a
plain longest-chain PoS protocol without any certificates. This behavior has already been
studied in previous work [12] on which our analysis for this case relies. We will use the
following terminology from [12, 13].

» Definition 20 (Terminal leader strings; phases). Let ¥ = ({0} xN) C X. A leader string w is
called terminal if it is either the empty string or it terminates with a A-period with no honest
successes, i.e., if w € {e}U (Z* o Eﬁ), where o denotes language concatenation. A non-empty
terminal leader string ¢ is called a phase if it ends with the first string from Zﬁ it contains.
Formally, ¢ = ¢1 ... ¢, € X" with n > A is a phase if (pi—at1...¢; € B8) =i =n.

We remark that any characteristic string w € X" has a unique decomposition into phases
in that sense that w can be written ¢(*) - .. ()¢, where each ¢(*) is a phase and 1 is a string
that does not contain a sequence from %5. We call ¢ an “incomplete phase” and note that
1) may be empty, in which case the string w is terminal.

Moreover, recall that the length of an execution in slots does not need to be an integer
multiple of U.

» Theorem 21 (Reach and margin during O-rounds). Fix £ > 1. Let (w,0) be an execution
and (wz, ') be its extension such that all slots covered by x correspond to 0-rounds in o',
i.e., if we write o' =: 0% ...07,, €{0,7, 1}l then Vi € {Jw| +1,..., |wz|}: Ornagy = 0-We
have

ne(wz, o) < plwe,0’) < plw, 0) + e (@) (9)

Moreover, if w is terminal and © =: ¢ is a phase, we have

p(w¢7 U,) < max {p(wv U) + #[a](¢) - hA(QS)v #[a] (¢)}

and if additionally pe(w, o) < —#5)(¢), we also have

pe(wd, o) < pp(w, ) + #2(¢) — ha(e).
Finally, if w is terminal, ¢ = (1,0)(0,0)2, and p(w, o) = pe(w, o) =0 then pp(wed,o’) < —1.

Proof. The first inequality in (9) follows directly from the definitions. For the second
inequality, let F’ - (wzx,0’) be a witness tree for p(-) and let 77 be a (reach) witness chain
in F/, ie., p(wr,0’) = ap (T") = wtp: (T") — wt(F’). Let F C F’ be a restriction of F’ to
(w,0); let T be a restriction of 7" to F. We have wtp: (T") < wtp(T') + #(na)(x)as T might
grow—compared to T-—by at most #pa)(z) vertices, and it contains no additional certificates
compared to T'. On the other hand, it follows directly from the definition of a public subtree
that wt(F”) > wt(F). Combining these two observations, we get

p(wz, o) = wtp/(T") — wt(F') < (Wtp(T) + #pa () — Wt(F) < p(F) + #{na) (2)
< p(w,0) + #[ha] (z)
as desired.

The remaining claims of the theorem are direct reformulations of Theorem 2 from [12]
to our setting. Indeed, [12, Theorem 2| describes the behavior of reach and margin in
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the PoS setting without the presence of certificates, which is exactly the setting that
occurs in our analysis during O-rounds. To see the connection, notice that our blocktree
axioms (T1), (T2), (C1) and (P2) correspond to blocktree axioms (A1), (S3), (S4) and (A2)
in [12], respectively; while our axioms (T3), (C2), (C3), (P3) and (P4) govern the behavior
of certificates and have no counterparts in [12]. Furthermore, an inspection of the definitions
of reach and margin shows that in the absence of certificates, both notions coincide with
their counterparts in [12], justifying the translation of their results to our 0-rounds. |

4.7 Reach and Margin Recurrences during 7”-Rounds

Finally, we study the effect of *?’-rounds. Intuitively, these rounds are detrimental to the
evolution of reach and margin, but the following theorem upper-bounds the loss from a
"?’-round by the term B + U, and as we will see later, this is sufficient for our analysis as
"?’-rounds are sufficiently rare.

» Theorem 22 (Reach and margin during ?-rounds). Fixz ¢ > 1. Let (w,0) and (wx,o0?) be
two executions such that x exactly spans U slots corresponding to a single 7-round. Then

plwz,o?) < p(w,0) + B+U and pe(wz,0?) < py(w,0) + B+ U .

Proof. Reach. Let F'+ (wx,07?) be a witness tree for p(-) and let 7" be a (reach) witness
chain in F', i.e., p(wx,0?) = ap (T") = wtp(T') — wt(F’). Let F C F' be a restriction of
F’ to (w,0); let T be a restriction of T/ to F'. We have

wtp (T") < wtp(T) + B+ U

as T’ might grow——compared to T—Dby at most U vertices, and also contain at most one
additional certificate (from the final ?-round), contributing with weights at most U and B,
respectively. On the other hand, it follows directly from the definition of a public subtree
that wt(F”) > wt(F). Combining these two observations, we get

p(wr,0?) = wtp (T") —wt(F') < (wtp(T)+ B+ U) —wt(F) < p(F)+B+U
<p(w,o)+B+U

as desired.

Margin. Let now F’ F (wx,0?) denote a witness tree for p,(-) and let T} 4, Ty be a
pair of witness chains in F’ such that ap/ (T7) > 0 and ap/(Ty) > ap/(Ts) = pe(wzx,c?). Let
F C F' be a restriction of F’ to (w, o). Let Ty and Ty be restrictions of 77 and T4 to F,
respectively; notice that T7 %y To. By the same argument as in the case of reach above, any
chain T" in F”’ satisfies wtp/ (T") < wtp(T) + B + U, where T is the restriction of 7" to F.
We also have wt(F”) > wt(F). Therefore

we(w, o) > pe(F) = e F(mln{WtF(Ta),WtF(Tb)}> —wt(F)
TatteTy
> min{wtp (1), wtr(Th)} — wt(F)

> (wtp (T5) — U — B) —wt(F’) = py(wz,0?) —U — B

as desired. <
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4.8 Good Leader Strings

Having established recurrences for reach and margin given a particular execution (w, o), the
next step in the proof is to establish that the voting string o always has a certain format;
this is the purpose of Section 4.9. In preparation, this section introduces the notion of good
leader strings w, which necessitates defining two notions that have close correspondence with
reach and margin (cf. Section 4.3).

Recall that reach is a quantity that intuitively captures weight stemming from blocks and
certificates unknown to honest parties, and that margin relative to some slot { corresponds
to the maximum weight difference between two dominant chains that at slot £ or before.

In the following, let ® = (¢1), ..., ¢*)) be a sequence of phases in X*.*

4.8.1 Reach-Like Quantity

Consider a quantity R[®;z] defined as follows, where z > 0 is an initial value and R[®; z]
corresponds to the reach after processing ® in a setting without certificates:

R[®: ] z ifk=0
J 2] =
max (R[®'; z]) + #zj 6% — hao™, #0"))  otherwise,

where ¢’ = ((b(l), ey qb(k_l)). Observe the correspondence between the evolution of R and
that of p during O-rounds (cf. Section 4.6).

4.8.2 Margin-Like Quantity

In a similar vein, consider a quantity M,[®; z] defined as follows, where z > 0 is an initial
value and M;[®; z] corresponds to the margin relative to ¢ after processing ® in a setting
without certificates. First, up to ¢, M, is equal to R, i.e., if |®] < ¢,

M[®; z] := R[D; z].

After ¢, i.e., for |®'| > £—1 (for @' as above), M, behaves as follows: if R[®'; z] = M[®';z] =0
and ¢ = (1,0)(0,0)%, then

M[®; 2] = —1;
otherwise,

M[®'; 2] + #a0®) — ha¢™ if My[@'; 2] < —#a0*),
R[®; 2] otherwise.

My[®; 2] = {

Observe the correspondence between the evolution of M, and that of yy during 0-rounds (cf.
Section 4.6).

4.8.3 Leader-String Properties

Consider the following properties of a leader-string:

» Definition 23 (Reach- and margin-like LS properties). A leader string w has

4 Consult Section 4.1 for notation related to lotteries, such as 3, and Section 4.6 for the definition of a
phase.
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(T'; o, B)-reach if for every contiguous substring x of w of length at least T,

RipW 0 o+ #1001 80 ] + H#payth < B,

and

(T; o, B)-(super-)margin if for every contiguous substring x of w of length at least T,
M[pM - 65+ #1200 + #ppaytp < B
(and if additionally “margin remains negative at all times”),

where © = ¢\ - ¢ is the phase decomposition of x into phases where 1 is a (perhaps
empty) incomplete phase with no quiet period.

» Definition 24 (Chain-quality-like LS property for cooldown). A leader-string w has (Tuci, B, D, U)-
cooldown-chain-quality if any substring

z = mpre” $1|| oo ||1't || ypreHyhci”ypost

€z Y

of w satisfying

1. Yna is round-aligned (i.e., starting at round boundary),

2. |Yhail = (Tha = 3) - U,

3. |ypost| >0,

4. if lypre] < 3U, thent =0, else t >0, and
5. |$pre‘ >0,

6. |17,| = U,

has the property that

ha(Fore) + D ha(d@) + ha(d) > #(@pe) + > #a(@i) + #a1(y) + (B+ D+ U+ A)

i=1 =1
(10)
:#[a](z)+(B+D+U+A),

where

G (resp. Tpre) 15 Y (TESD. Tpre) with A symbols truncated on each side,
T; 1s x; with 2A symbols truncated on the left and A on the right.

» Definition 25 (Chain-quality-like LS property for happy periods). A leader-string w has
(TuL, D, U)-happy-chain-quality if any substring

z = Tprel| 1| - - - |24
———

x
of w satisfying

1. x; is round-aligned (i.e., starting at round boundary),
2. 0< |zpre| < U,

3. |{,E2| = U,

4.t > K3
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has the property that

hA(jpre) + Z hA(i'z) > #[a] ((Epre) + Z #[a] (1’1) + (D +U + A) (11)

=1 =1
= #[a](z) + (D+U—|—A) ,

where

Tpre 15 Tpre With A symbols truncated on each side,
T; 1s x; with 2A symbols truncated on the left and A on the right.

4.8.4 Good Leader Strings

The following definition captures the exact requirements a leader string must satisfy for the
protocol to be secure:

» Definition 26 (Good leader strings). A leader string w is called (Tuci, Tcs, Tu, B, U, L, K1, ka)-

good if it has

(Ther - U; k1 + B+ U, ky)-reach;

(Tcs - U; k1, —ka)-marging

(Tes - U;—ke + 2L+ B+ U, —k2)- and (T - U; —ka + 2L + B + U, —1)-super-margin for
every T'> 1;

(Twc, B, D, U)-cooldown-chain-quality;

(TuL, D, U)-happy-chain-quality.

Otherwise, w is called bad.

For simplicity, whenever the parameters are clear from the context, they are dropped, and
we simply say good leader string.
The following lemma follows from [1].

» Lemma 27. Let w=w; ... wy € XV be a leader string. Then, the probability that w is
bad s negligible in Tuc U, TcsU, and Ty U.

4.9 Voting String Analysis

The goal of this section is to prove that the voting string always obeys the rules provided
in Theorem 28. Throughout the entire section, whenever there is mention of a good leader
string, what is in fact meant is a (Thci, Tcs, B, U, L, k1, k2)-good leader string, where 1 and
Ko are two security parameters.

» Theorem 28. Assume a good leader string is chosen. Then, the voting string is built
according to the following rules (where X is the empty string and — stands for “can be
followed by”):

(HS-I) o = A — 1

(HS-I) o = ... 1 — {7,1}
(HS-III) o = ...7 — 0

(HS-IV) o = ... 170" — 0 if 1<L<K-1
(HS-V) o = ... 170" — {?,1} if Le{K-2K-1}
(HS-VI) o = ... 070" — 0 if 1<L<K-1
(HS-VII) o . 070F — {7,1} if L=K-1
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A voting string o € {0, 1, 7}* is called valid if it satisfies the conditions imposed by Theorem 28.
Note that a voting string can naturally be split into cycles ¢ = cico ... ¢y such that

C; = 1t?OL

for ¢t > 0 (except for ¢;, where t > 1) and L € {K — 1, K — 2}; note that ¢, may be a partial
cycle. Further, each cycle ¢ can be subdivided into periods as follows (where the partial cycle
at the end may only have some of the periods):

happy period: the (maximal) prefix of 1’s in ¢;

7-period: the 7-round following the happy period together with the two subsequent
0-rounds;

healing/certificate-inclusion (HCI) period: the sequence of Thc O-rounds following a
?-period;

certificate-settlement (CS) period: the sequence of Tcs 0-rounds following the HCI period;
leftover period: the remaining 0-rounds in the cycle.

Note that the reason for assigning the first two O-rounds after the ?-round to the ?-period is
that honest parties can only conclusively determine that the protocol is in cooldown after
not seeing a certificate during two complete rounds, which is required for them to submit
the latest certificate they know to the chain (the CI in HCI). Therefore, it is convenient to
define the HCI period as the period in which there must be an honest block, even though
healing technically starts earlier.

4.9.1 Helper Lemmas

The proof of Theorem 28 is by induction. To facilitate this, one formalizes the helper lemmas
below.

4.9.1.1 Cooldown Properties

The first lemma establishes properties of the cooldown portion of cycles (HCI and CS periods).

» Lemma 29. Assume a good leader string is chosen and that the execution has yielded a
valid voting string o € {0,1,?7}M up to some round M. Let Dys be the set of chains that are
dominant at the end of round M .5 Then,

1. all chains in Day agree up to the end of the last HCI period that is followed by a complete
CS period.
2. every chain in Dys has at least one honest block in every complete HCI period, and

Note that proof of the second part of Lemma 29 uses the first part.

Agreement on HCI periods. The proof of the first part proceeds by first tracking reach p
from genesis, showing that it remains bounded throughout, and in particular below security
parameter k1 after the last slot ¢ of the HCI period in question. Then, uy, i.e., margin
relative to £ is tracked, starting at x; after slot £, showing that it falls below —ks by the end
of the subsequent CS period and then that it remains negative until the end of round M,

5 A chain is dominant at time ¢ if it sufficiently heavy to be adopted by an honest party.
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which yields the desired claim in conjunction with Lemma 15. For readability, the arguments
of reach and margin are dropped in favor of simply thinking them as a function of time.

Observe that at genesis p is 0. This is followed by zero or more 1-rounds, after which, by
virtue of Theorem 16 and the assumption that B > U, p is bounded by U +2L+ A < k1 (the
last inequality by assumption again). Similarly, by Theorem 22, p is bounded by x; + B+ U
after the subsequent ?-round.

The goal is now to apply the good-leader-string (GLS) property to argue that p is bounded
by k1 either (a) after the final round before the subsequent restart or (b) after the final
round of the subsequent HCI period if that period is already the HCI period in question.

(a) In this case, let x be the leader string corresponding to the entire period of 0-rounds.

Decompose it into 2 = ¢(@ ... ¢*)4) be the decomposition of z into phases where 1 is
a (perhaps empty) incomplete phase with no quiet period. Note that reach is at most
kKi+B+U+ #[ha]qb(o) after phase ¢(®). Thus, by the GLS property and the fact that
|z| > U - Ty, reach is at most k1 — #ha¢ after #%) and at most k; after the entire
period of 0-rounds.

(b) A similar argument, but taking as x only the leader string up to the end of that last
round of the HCI in question.

In case (a), observe that after the zero or more 1-rounds following the cooldown, p remains
below k1, again using Theorem 16 as well as B > U and U 4+ 2L + A < k3. The tracking
now continues as above until the HCI period in question.

One now needs to track pg, starting at ¢, where it is bounded by reach, i.e., at that
point, uy < p < k1. Analogously to case (a) above, one considers leader string portion
corresponding to the remaining cooldown, i.e., to the at least T¢s 0-rounds following the HCI
period in question, and argues that, based on the GLS property, py drops to below —ks.

It remains to show that p, remains negative until round M. After the zero or more
1-rounds that follow, iy < —ko + 2L, using Theorem 16 and B > U. After the subsequent
?-round, py < —kgo +2L+ B+ U. It is also clear that during these rounds py cannot become
non-negative.

If M has not been reached yet, consider again two cases (a) and (b), depending on
whether round M lies beyond the next cooldown or not, respectively.

(a) In the above fashion and using the first super-margin GLS property, argue that py < —ko
by the end of the cooldown and continue tracking margin in this fashion.

(b) In the above fashion and using the second super-margin GLS property, argue that
e < —1 by the end of round M.

This concludes the proof of the first part of Lemma 29.

Honest blocks in HCI periods. The proof of the second part of Lemma 29 proceeds by
induction on the number of cycles, using the first part of the lemma to argue settlement of
the purported honest block in each HCI period by the end of the subsequent CS period.

Consider the first cycle ¢; and a slot s anywhere in ¢; but after the HCI period. Assume,
towards a contradiction, that there is a chain C dominant in slot s without any honest blocks
with labels from the HCI period in ¢;. Let s be the slot number of the last honest block
B* before the HCI period; note that B* may be the genesis block. Further, let sygh: be the
first slot after the HCI period for which C[: syignt] is viable; this happens no later than at
slot s. Observe that there are no honest blocks in the interval (Sieft, Sright) on C.

One now (I) lower bounds the minimum honest weight (MHW )—the minimum weight
among all honestly held chains—at slot syghe and (II) argues that C' cannot reach this MHW
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by slot syight (based on the assumption that a good leader string was chosen). In the following,
let w — 1 be the weight of C in slot sjere — 1—as seen by the honest party P* who created B*.
Let 7eft be the round that contains s + A. Consider the following two cases:

(A) 7Tiere is a 1-round;
(B) 7iefe is a ?-round or a O-round.

In case (A), let riere + 1, ..., Tlere + ¢ be the t > 0 1-rounds following ries and let x1,...,x; be
the leader string for those portions. Further, let ypre, Yhci, and Ypost denote the leader-string
during the subsequent 7-period, HCI period, and the slots between the end of the HCI period
and signt. Note that

z = a2 || YorellYneill ypost

x Y

satisfies the five conditions of Definition 24.
Towards (I), the first step is to show:

» Proposition 30. The MHW is at least w — C + B at the end of round 7ief.

Proof. Consider first the case where sif is later than 2A after the beginning of rier. In this
case, w — 1 includes the weight of the certificate from 7, as it is known to all honest parties
2A Into 7ieft.

In the other case, note that is suffices to show that the MHW at the beginning of rs
is at least w — C as then the fact that reg is a 1-round implies that the MHW grows to at
least w + B by the end of 7.

If the certificate form 7, ends up on C, then C' has weight w + B > w — C + B by the
end of 7. Otherwise, let i > 1 be such that the certificate from rjer. — 4 is the last certificate
on C (this may go all the way back to the genesis certificate). Let C’ be a chain that is
dominant at the beginning of 7. and w’ its weight; note that the MHW at that point is
thus at least w’. It remains to show that w’ > w — C.

Let w” be the weight of the chain ending at the block B” certified in round rief — 7 and
observe that

w’ > w” 4+ iB as C' contains all the certificates from rounds 7 — (i — 1), . . . , Fieft, and
w—w” < C+ iU as this is the maximum number of blocks that C' could gain between
B’ and B*.

Using that B > U, the above inequalities imply that w’ > w — C. |

After the t > 0 1-rounds 7rese + 1, ..., 7efe + ¢, the MHW is at least

t
w—C+tB+ Y ha(#),

i=1

where Z; is x; with 2A symbols truncated on the left and A on the right. This is the case
because if the MHW is w’ at the beginning of a 1-round, then after the first 2A slots, it
grows to w’ + B due to the fact that the boosted block lies on a chain that is dominant at the
beginning of the round, and by virtue of 1-rounds, the first honest party sees the certificate
during the initial A rounds. Due to the Z;-portion of the round, the MHW grows by at least
ha(%;) by the end of the round.

The MHW increase during the ?-period, the subsequent HCI period, and the remaining
slots until slot s is always at least ha (%), where § is y with A slots truncated on each side.
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This follows from the fact that the potential release of the certificate from the ?-round can
only improve the MHW.

Towards (II), first, observe that between slot sjer and the end of 7, chain C' may gain
(on top of w) at most weight A + U in blocks; further, it may gain additional weight B from
the certificate in 7jer. During the ¢ > 0 1-rounds 7ieft + 1, . . ., 7t + ¢, C may gain additional
weight at most

t
tB + Z #[a] (z;).
i=1
Finally, during the ?-period, the subsequent HCI period, and the remaining slots until slot s,
C gains at most B + #5)(y) additional weight.
Therefore, in order to be dominant in slot sygne, it is necessary that

t t
D HE (@) + #@@) + (BHC+U+A) > > ha(@)+ha(d),
i=1 i=1
which contradicts GLS condition (10) (cf. Definition 24).
In case (B), let ypre be the portion of the leader string from slot max(sieft, s'), where s’ is
the first round of ref, to the last slot just before the HCI period, yne the leader string during
the HCI period, and ypest the leader string after the HCI period until slot s. Note that

2 = Ypre ||yhci Hypost
——
y

satisfies the five conditions of Definition 24.

Towards (I), the MHW by Syignt is at least w + ha(g), where § is y with A slots truncated
on each side. Towards (II), observe that chain C' may gain weight at most B + #)(y) + A
until slot srght (the A is relevant when syignt < s).

Therefore, in order to be dominant in slot sygh, it is necessary that

#@y) +(B+A) > ha(),

which contradicts GLS condition (10) (cf. Definition 24).

To conclude the base case, observe that the first part of Lemma 29 implies that all chains
dominant at any point after the first cycle ¢; thus contain an honest block in the HCI period
of C1.

The induction step follows along similar lines, but anchoring the argument at the honest
block known to exist in the HCI period of the previous cycle. Specifically, assume the lemma
holds up to cycle ¢,,—1. Then, to establish the lemma for ¢,,, inductively identify an honest
block B in the HCI period of ¢,—; and redo the above argument, adding the portion of the

leader string between B and the end of the last 0-round to the GLS property as zpre (cf.

Definition 24).

4.9.1.2 Round Number of Last Certificate on Chain

» Lemma 31. Consider an execution spanning exactly n rounds and assume a good leader
string is chosen. Further, assume that the execution yields a valid voting string o € {0,1,7}"
of the form

o= ...1720" (205120l

for ' e {K —2,K — 1}, v >0, and L > 0. Then, there is an integer ¢ > 0 such that for all
parties P, round(certp,, ) =n— L —cK.

29
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Proof. Let r; be the last 1-round in o and r¢ be the 7-round immediately following r1; let
5 be the first ?-round after rs.

First, note that since there is a complete CI period following 71, Lemma 29, Part 2, (with
M = n) implies that the certificate from round r; appears on the chain of every honest party
at the beginning of round n + 1; thus, round(cert},, ;) > 71.

Assume now the lemma is false. It follows immediately that any potential certificates from
73 and all following ?-rounds cannot be cert}, . ,; since they would satisfy round(certp,, . ;) =
n — L — cK for some integer ¢ > 0. Therefore, the only options left are round(certy,, ;) €
{r1,m}.

Furthermore, observe that r; —r; > K — 1 = Tyc + T'C'S, which means, by Lemma 29,
Part 1, that at the beginning of round r4 the inclusion window for the certificate from rs
was in the settled part of the ledger. Thus, cert’j,w, was the same for all P and could not
have changed until round n + 1, i.e., cert}, , = cert%nﬂ.

The assumption that the lemma is false now implies that

either round(certp, ) = round(certp, ) =7y and L' = K — 1

or round(certp,, ) = round(cert};’ré) =rpand L' = K — 2,

both of which violate VR-2B. |

4.9.2 Proof of The Voting String Theorem

Proof (of Theorem 28). The proof is by induction on the length of o. The base case for
|o| = 1 follows from rule (I) since oy = 1 by definition.

Assume now the theorem holds for || = n. One must show that 0,41 follows the HS
rules. To that end consider the following case distinction:

Case o, = 1: In this case, at least one honest party saw a round-n certificate by the end
of round n and will consequently, due to VR-1, cast a vote in round n + 1. Therefore,
ont1 € {?,1}, which follows HS-II.

Case o,, = 7: In this case, the only permissible extension of ¢ is 0,41 = 0, using HS-III.
To show this, first observe that o,, = 7 implies that no honest party has seen a round-n
certificate by the end of round n, and therefore, VR-1 is false for all of them at the
beginning of round n+ 1. Furthermore, by the induction hypothesis, the HS rules preclude
0n—1 = 7. Thus, consider the following two subcases:

Case 0,1 = 1: At least one honest party must have seen a round-(n — 1) certificate
by the end of round n — 1. Since U > A, that certificate will be delivered to all honest
parties before the beginning of round n + 1, and therefore, round(cert,, ;) >n —1
for all honest P.

Therefore, using that R > 2, VR-2A is false for all honest parties in round n + 1. This
implies that 0,1 = 0.

Case 0,1 = 0: Using the induction hypothesis, the HS rules imply
o= ...170" (2051

for some L' € {K — 1, K — 2} and v > 0. Using Lemma 31 with L = 0, one obtains
that round(certp,, ;) = n — cK for some ¢ > 0 for all honest parties P. Therefore,
n+1—round(certy,, ;) = cK + 1, which means that no honest party votes in round
n+ 1. Thus, o,_1 = 0.
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Case o, = 0: Again, observe that o, = 0 implies that no honest party has seen a
round-n certificate by the end of round n, and therefore, VR-1 is false for all of them at
the beginning of round n + 1.

By the induction hypothesis and the HS rules, o = ... ? 0% for 1 < L < K — 1. Consider
the following subcases depending on L:

Case L < K —2: In this case, the only permissible extension of ¢ is g,41 = 0, using
HS-IV or HS-VI. To show this, consider the following further subdivision:

Case 0 = ...1 ? 0%: Let r; be the last 1-round in o. Another case distinction is
necessary to distinguish cases where VR-2A or VR-2B is applicable and to show
0n+1 = 0, which follows HS-IV:

Case L +2 < R: Observe that the certificate from r; was delivered to all honest
parties by the beginning of round n+1 and thus, round(cert,,, ;) > n+1—(L+2).
Consequently, n + 1 — round(cert,,, ;) < L + 2 < R, which falsifies VR-2A for
all P. Hence, 0,41 = 0.

Case L+2 > R: Sincen+1—r1 =L+2> Rand R, A > Tyc), Lemma 29, Part
2, (with M = n) implies that the certificate from r; is on every chain held by
an honest party at the beginning of round n + 1, i.e., round(cert} ;) > 1 for
all P. Since therefore, n+ 1 — round(certp,, ;) < L +2 < K, VR-2B is false and
no P votes in round n + 1. That is, 0,41 = 0.

Case o = ...0 ? 0F: Using the induction hypothesis, the HS rules imply
o = ...1720" (2051 20k

for some L' € {K —1,K — 2} and v > 0. Using Lemma 31, one obtains that
round(certp,, ;) =n — L — cK for some ¢ > 0 for all honest parties P. Therefore,
n+ 1 —round(certp, ;) =n+1—(n— L —cK) = cK + L+ 1, which is not a
multiple of K since 2 < L+ 1 < K — 1. Hence, VR-2B is false and no honest party
votes in round n 4+ 1 and o,,_1 = 0, which follows HS-VI.

Case L = K — 2: Consider the same two subcases as in the previous case:

Case o = ...1 ? 0F: According to the HS rules, any symbol is acceptable as 0,1
and hence, there is nothing to show.

Case o = ...0 ? 0": Similarly to above, using Lemma 31, one obtains that n 4+ 1 —
round(certy . 1) = ¢K + L + 1, which is not a multiple of K since L +1 =K — 1.
Hence, VR-2B is false and no honest party votes in round n + 1 and 0,1 = 0,
which follows HS-VI.

Case L = K —1: Let ry and r7 be the last 1-round and ?-round in o, respectively. Note
that cert,, ,, <77 and thus, clearly, n +1 > cert,, ., + R, which means that VR-2A
is satisfied for all honest parties. One final time, consider the same two subcases as in
the previous cases:
Case 0 = ...1 7 0%: Observe that n — 1, = K — 1 = Ta, round(cert}7n+1) =
round(certp,) (using Lemma 29, Part 1), and, moreover, round(certy,,,) > 71 since
A > Tyc. Since o, = 0, no honest party voted in round n. This is only possible if
the certificate from r, was already on the chain in round n, i.e., round(certy ) = 7.
Hence, VR-2B is satisfied for all honest parties. It follows that all honest parties
vote in round n + 1 and 0,41 € {?,1}, which follows HS-V.

Case o = ...0 ? 0L: Similarly to above, using Lemma 31, one obtains that n 4+ 1 —
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round(certy ,, 1) = ¢K + L + 1, which 4s a multiple of K since L +1 = K. Hence,
VR-2B is satisfied for all honest parties and all honest parties vote in round n + 1
and 0,41 € {7,1}, which follows HS-VIIL

4.10 Concluding the Consistency Proof

» Theorem 32. The Peras protocol satisfies consistency except with negligible probability.

Proof. Assume a good leader string is chosen, which fails to happen only with negligible
probability, according to Lemma 27. Let C be the chain output by some honest party P in
slot £. It suffices to show that C is a prefix of the preferred chain Cprer,pr of any party P’ in
any slot ¢/ > £.

To that end, let £* be the pruning slot as described in Figure 1. Consider the following
two cases, corresponding to the two methods of pruning, where p € {0,1}* is the string such
that p; = 1 if and only if a round-i certificate has been seen by P:

1. ¢*+ D is followed by at least [Tcs/B] complete rounds ¢ with p; = 1: in this case, starting
at most at 1, the margin relative to £* reaches —x9 by the end of the happy periods.

2. ¢* is followed by at least Tcs + K complete rounds ¢ with p; = 0: in this case £* is followed
by an entire CS period of a cooldown, at which point it reaches —xs.

In either case, an argument similar to that in the proof of the first part of Lemma 29 shows
that the margin relative to ¢* remains negative forever. This in conjunction with Lemma 15
yields the desired claim. |

4.11 Liveness

» Theorem 33. The Peras protocol satisfies liveness with parameter uw = O((Tuc) + Tho)U)
except with negligible probability.

Proof. Assume a good leader string is chosen. Let ¢ be some slot and assume that the
environment provides a transaction for inclusion to all honest parties in every slot until slot
f + u. It suffices to prove that every chain held by an honest player after £ 4+ u contains at
least one honest block in the interval [¢, £ + u].

First, note that an argument similar to that of the second part of Lemma 29 shows that
if ¢ is followed by T complete 1-rounds, there is an honest block in [¢, ¢ 4 u], based on the
fact that the leader string has (Ty, D, U)-happy-chain-quality.

Otherwise, it takes at most O((Tuci + TuL)U) slots until £ is followed by Thc O-rounds.
Again, an argument similar to that of the second part of Lemma 29 shows that if £ is followed
by Thci complete O-rounds, there is an honest block in [¢, £ 4 u], based on the fact that the
leader string has (Twci, B, D, U)-cooldown-chain-quality. <

4.12 Dynamic-Stake PoS and Bootstrapping from the Genesis Block

A static-stake “longest-chain” (that is, heaviest chain) PoS protocol as the one analyzed so
far can be used to bootstrap a PoS protocol with dynamic stake. Since we established the
combined security of Ouroboros with a fast settlement feature, the same construction can
be used, as the main analytical quantities that establish the security of Ouroboros, namely
reach and margin from Definition 13, have been re-proven for our construction to establish
safety.
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( Stake distribution deadline f Randomness generation deadline
Phase 1 Phase 2 Phase 3
(R/3 rounds) (R/3 rounds) (R/3 rounds)
stabilize stake distribution include honest randomness stabilize randomness
(CG+CP) (3CQ) (CG+CP)

Figure 2 Illustration of the three phases of an epoch for the inductive argument underlying
Ouroboros Genesis in the case (g,h) = (R, R/3).

The lifting to the dynamic stake proceeds as follows: multiple rounds are combined into
epochs, each of which contains R € N rounds. The epochs are indexed by j € N. During
epoch j, leader election is based on the stake distribution S; recorded in the blockchain up
to g rounds before the beginning of this epoch (in [1, 8] the value ¢ = R is chosen). The
epoch randomness for epoch j is derived as a hash of the additional VRF-values that were
included into blocks up to h rounds before the beginning of this epoch (in [1, 8] the value
h = R/3 is chosen).

Security of the full protocol. Lifting the security argument to the full protocol requires
additional reasoning to account for the inductive epoch structure. For ease of exposition, we
first consider the case (g,h) = (R, R/3).

As depicted in Figure 2, each epoch then consists of three phases: Phase 1 must ensure
stabilization of the stake distribution for the next epoch, which is taken from the last block
before this first phase starts—this block must be stable before the phase ends. This property
is argued via a combination of the standard chain-growth (CG) and common-prefix (CP)
blockchain properties. Phase 2 guarantees the inclusion of an honest block within this phase
in any surviving chain, and relies on the existential chain quality (3CQ) guarantee. Finally,
the role of Phase 3 is to stabilize all the randomness-determining blocks (those belonging to
the rounds of Phase 2) via the same combination of CG and CP arguments as the first phase.
We refer an interested reader to [1, Theorem 7, full version] for details of this argument.

The logic of the argument remains unchanged in the general case: if B;_4 and Bey_p,
denote, respectively, the last blocks affecting the stake distribution and randomness to be used
in some epoch e, then the following two conditions are required by the inductive argument:

(C1) Bgi—4 must become stable sufficiently early to allow for a guaranteed honest contribution
to the randomness for e after that; and
(C2) Bi_p, must become stable by the beginning of the epoch e.

Weight-based Genesis Rule. Ouroboros Genesis implements a secure procedure for parties
to join the execution later only knowing the correct genesis block using the so-called Genesis
rule: Joining parties determine their state by listening to the broadcast chains for sufficiently
long and applying a specific rule to choose the one they adopt as their state. Namely, for any
pair of two competing chains, if they branch in very recent past the longer one is preferred;
but if they branch in more distant past, a joining party gives preference to a chain that is
more dense (i.e., contains more blocks) in a fixed period of gw rounds after the branching
point of these two chains (where gw is a protocol parameter chosen in the order of the security
parameter(s)). Recall that honest parties sign off blocks as well as votes for certificates using
key-evolving signatures to tame adaptive corruptions.
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Not surprisingly, our adjusted Genesis Rule simply states that density is not measured in
blocks but more generally in weight, which is accumulated by blocks (weight of 1) as well as
certificates (additional weight B for a certified block).

» Definition 34 (Weight-based Genesis Rule). Let P be a party. For any pair of two competing
chains C1 and Cy, let B be their last common block in slot s and consider the set of slots
Igen = [s+1,...,s+ gw] of size gw. Party P gives preference to the chain that carries
more accumulated weight on interval Igen in the local view of P, where weight accumulation
happens by means of blocks with slot numbers s’ € Igey, whereby each block has weight 1 and
any known certificate certifying a block in interval Iyen adds an additional weight B.

This chain preference rule implies that a party P is following the heaviest chain unless
the diverging slot is more than gw slots away from the current time. This also implies that
the last common block must be buried under weight in the order of the security parameter
on both candidate chains.

Security proof. The core of the security argument is an adaptation of [1, Theorem 2] to our
new setting. Intuitively, the theorem asserts that the chain honest parties maintain (ignoring
new joiners), is denser in any window of length gw than any chain that could be forged by
an adversary.

» Lemma 35. Consider an execution of the dynamic-stake PoS protocol with the weight-based
Genesis Rule and let k denote a security parameter. Consider the first slot 7 in which some
honest party P (present since the beginning of the execution) received candidate chain C
heavier than its locally adopted chain Ci,. at the onset of slot ? and assume the two chain
fork where the last common block B has slot * < r— gw. Then, the honest party P discards
C except with negligible probability.

Proof. We first recall that the weight accumulation in the interval of length gw after slot ¢*
accumulates by two mechanism. Each successful voting round for a boost of a vertex v with
l4(v) > ¢* adds at least weight B >> U to the chain, where, for the sake of concreteness,
we can assume B = k/c for a constant c. Furthermore, these heavy blocks must be on the
same chain corresponding to the sequence of 1-rounds (if any) aligned with slots £ > ¢*. Also
recall that the blocks for each certificate are not necessarily distinct. The second weight
increase stems from blocks alone.

For the sake of reaching a contradiction, assume now that P accepts C as its preferred
chain due to the condition Wtp(C[0* + 1,0* + gw]) > Wip(Cloc[l* + 1,* + gw]). From the
results in Section 4.9.1 we see that over the course of x/U slots, we obtain at least chain
growth on the interval of size gw on Cj,. in the order of (), i.e., adopting the candidate
chain C' indeed causes a rollback of at least weight « if adopted by P by definition of £*. By
the above condition this implies that the candidate chain C must have accumulated at least
as much weight on the same interval.

It remains to argue that we can construct a consistency violation in this execution in the
order of k. Let us first define the following two quantities:

Let s7 be the slot corresponding to the first honestly generated block in Cj,. with slot
number strictly greater than £* 4+ gw; otherwise s := Z.

Let s3 be the first slot with slot number strictly greater than £* 4+ gw and associated with
a block fg\r which at least one honest party holds a certificate. If no such block exists,
let s5 :=£.



C. Badertscher, S. Coretti, P. Gazi, A. Kiayias, A. Russell

We let 5 := min{s}, s3} and make a case distinction:

1. =7 This case implies that Cj,. after the genesis window and up to the current time
¢ has no honest block and no certificates are known to P to boost any of these blocks

(notice that no certificates could have been formed for a block of slot 7 at this point).

This implies that we can build a dominant chain from the competing chain C restricting
the characteristic string to slots 0. .. ?: we extend C starting after * + gw with a block
for any slot s, with £* 4+ gw < s < 5, when the slot leader is adversarial. Let’s call this
extension C. Since the only weight increase until (and including) 7 on Cly. is by blocks
only, the constructed extension witnesses a consistency violation of order Q(k) since
Witp(C[0,5 — 1]) > Wtp(Coc[0,5 — 1)) implies that ¢’ must be a dominant chain at slot
5 — 1 and the two chains fork at a block buried by at least weight x. Dominance follows
by the fact that either the block for slot 7 to Cioc is honest and thus any chain with at
least that weight is dominant, or otherwise we can further extend C to be heavier than
Cioc by appending one more block. It remains to argue that the slot leadership on both
candidate chains is identical. This follows by choosing gw as a fraction of an epoch such
as R/6, where the epoch is a constant multiple of x. This concludes the first case.

2. 5 < ¢ The condition implies that after the genesis window and up slot number 5 — 1,
Cloc cannot contain an honest block and no certificates are known to P to boost any of
these blocks associated with slots up to 5 — 1. From the existence of either an honest
block or a certificate for a block with slot number § we again extend the competing chain
c restricting the characteristic string to slots 0. . . we extend C starting after £* + gw
with a block for any slot s, with £* + gw < s < 3, when the slot leader is adversarial. We
again argue that this extension of C is dominant in the execution up to including slot
s — 1, which implies a consistency violation in the order of k as above.

If slot 5 is associated with an honest block on Cj,., then an honest party must have
extended a chain at most as heavy as the constructed competing chain, proving its
dominance.

If slot s is associated with a certified block B*, then some honest party must have had
block B* on its heaviest chain at the time of voting. Therefore, define the pair (P’, s’)
as follows: P’ is the first honest party to adopt a chain containing B* and this chain is
adopted in slot s’. Clearly § < s’ and by definition of 5, when P’ decided to adopt the
chain, no certificate for B* has been formed. We can thus conclude the dominance of our
constructed competing chain by observing that we can repeat the above argument for
the first slot in [8, ..., s'] that is associated with an honestly generated block on Cj,, if
any, and otherwise, our competing chain is dominant in slot s’ if none of the blocks until
including s’ are associated with honest blocks on Cj,..

This concludes the statement. |

As shown in [1], the security for newly joining parties follows from the above statement
in a modular way: suppose we have a newly joining party P* in slot s*. We compare the
behavior of P* to a so-called “virtual party” P* that is observing the network since the
beginning and after slot s*, the virtual party receives exactly the same messages as P*. We
consider the first chain Cyyn. the virtual party receives and adopts after s*. Let’s call this
slot Ssyne-

We know that if party P* adopts Csyn. too, then it has safely joined the network, since
the virtual party enjoys the security guaranteed by Lemma 35. Hence, assume now for the
sake of contradiction that P* receives Cyypn. but unlike its virtual counterpart, it discards it

35
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due to another chain C; held at that point in time. First, notice that both parties are aware
of both chains by definition. We can now make a case distinction:

If the virtual is adopting Csyn. when it is holding C; too at slot sgync, this implies that
C* could not have won the Genesis comparison as defined in Definition 34.

If the virtual party is adopting Csyne in slot ssyne. when holding a different chain than
C, then at some time prior to ssyn. it must have adopted some chain Cs that has been
preferred to Cq, either because C; has been received and discarded in favor of Cs, or
because Cy was adopted replacing Cy. Therefore, C; wins the Genesis comparison against
C1, and we know that Cyy,. wins the Genesis comparison against Cy. Hence, the only
reason why P* can discard Cyyp. is because C; wins the Genesis comparison against
Csyne- This constellation necessarily leads to a contradiction: consider the forking points
of the three chains: let s;5 be the slot of the last common block of chains €7 and Cs
and let s < s15 be the slot of the last common block of all three chains in question. If
5 > Seync — W, then Cjsyy,. must be the longest chain among them and the comparison is
transitive, hence C'; could not have been preferred. If s < s4yn. — gw, P* could only have
accepted C if C; wins the Genesis comparison to Cgyne, which implies that the virtual
party would actually also prefer Cy over Cgypnc. This which contradicts Lemma 35 since
5 < Sgync — gW and the virtual party is present from the beginning.

4.13 On Self-Healing in the Presence of the Voting Overlay

It is known that Nakamoto-style PoS can be instantiated to be self-healing with budget B [2].
It is straightforward to show that in the same sense, our protocol can be instantiated to
be self-healing with budget B. Recall from Section 2 that we only consider spike-attacks
as resulting from low honest participation leaving a relative majority to the adversary. In
such a scenario, (voting) committees are never adversarially dominated (with overwhelming
probability) since the absolute majority is still in the hands of honest (but offline) participants.

» Theorem 36. Consider an execution of the protocol with adjusted cooldown parameters
Thar = ©(Tha + B) and T¢g = ©(Tcs + B) in the order of the the anticipated spike-budget
B and let slot £* be the first slot such that the spike-budget is fully spent by £*. Then,
with overwhelming probability, the protocol with the adjusted parameters is self-healing with
budget B.

Proof Sketch. Consider the first round r* where the honest majority condition is restored.
We make a case distinction.

7,.*

is during a cooldown. For the adjusted parameters as in the statement above,
we now argue that we can re-establish the requirements needed for a safe restart as
in Lemma 29. To this end, we need to guarantee certificate inclusion by T}, as well as
settlement on the certificate at the end of the cooldown. We can do this via the following

case analysis:

1. Let r be the smallest slot number such that no older certificate can be included any
longer in any block with slot number r or higher, and let r* < r.
If r —r* > B+ Tyci, we can heal until the restart by [2], since we are running a
Nakamoto-consensus for sufficiently long to absorb the additional spike and have the
time window Ty as before to achieve chain quality. Furthermore, settlement by
the end of the cooldown period happens within T¢s slots. Otherwise, we know we
are less than B + Tyc) slots away from the certificate inclusion. For an appropriate
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choice of a cooldown duration in O(B + Thc)), we are guaranteed that the spike-attack
starts sufficiently distant after the start of the cooldown and at a point where the
certificate has been included by after Tyc) since the start of the cooldown. Furthermore,
by [2], any established chain-quality property on that portion of the Nakamoto-chain
will not be affected by the spike since the vulnerability window does affect the start
of the cooldown. Furthermore, we know that at least T{g slots are do be executed
until the end of the cooldown, in which case, again by [2], since we are running a
Nakamoto execution as argued in Lemma 29, it can heal from the additional spike and
subsequently settle normally within Tcs as in Lemma 29.

2. In the other case, we are at an advanced state of the cooldown period. Similar to
above, chain quality up to the certificate inclusion deadline is not jeopardized by the
later spike and what is left to argue here is that settlement is achieved at the end
of the cooldown. This follows by an analogous case distinction as above depending
on whether the spike happens close to the end of the cooldown, at which point its
effect cannot revert the chain back to the point of the certificate-inclusion deadline,
or whether the spike happens distant to the end of the cooldown, in which case the
last segment of the cooldown period is able to heal and settle as we are in a normal
Nakamoto-execution to reach margin of —x9 by definition of Tcs.

r* is during a sequence of 1-rounds. We know from Theorem 16 that margin decreases
during 1-rounds since B still dominates the total number of active slots (cannot increase
during a spike-attack since the spike is formed by reduced honest participation). Hence,
we either heal as margin hits 0 during this sequence of 1-rounds, or we enter cooldown at
which case the above case applies.

This concludes the proof. |

The dynamic-stake case. As shown in [2], the ability to self-heal is impacted by the
inductive epoch-structure when lifting the static case to the dynamic case. In particular, the
PoS protocol only self-heals against adversaries that are not able to raise margin above a
certain level determined by the protocol parameters R, g, h, and gw of Section 4.12, in which
self-healing follows for the full protocol immediately. Thus, qualitatively, given a level of
anticipated adversarial dominance, one can choose a parametrization that withstands against
attacks of that anticipated strength (but not against a more powerful attack).
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