

Adaptively Secure Fast Settlement with Dynamic Participation and Self-Healing

Christian Badertscher

Zurich University of Applied Sciences and Input Output

Sandro Coretti

Input Output

Peter Gaži

Input Output

Aggelos Kiayias

University of Edinburgh and Input Output

Alexander Russell

University of Connecticut and Input Output

Abstract

An important property of blockchain systems is the time it takes for a block to enter the irreversible part of the chain, which is typically captured by the notions of finality or settlement. To date, only Nakamoto-style protocols are known to simultaneously offer (1) resilience against adaptive adversaries controlling up to less than half of the underlying resource (such as stake or computational power), (2) dynamic participation (where parties join and leave at will without announcement), and (3) self-healing, i.e., being able to recover from temporary periods of adversarial majority without external intervention. However, these protocols offer only probabilistic settlement that requires wait time linear in a security parameter. The following open question thus arises: can a protocol be designed that maintains these properties—50%-resilience to adaptive attacks, dynamic participation, and self-healing—while offering faster settlement?

This work answers the above question by proposing a novel Nakamoto-style proof-of-stake (PoS) protocol—Ouroboros Peras—that builds on Ouroboros, the proof-of-stake algorithm behind the Cardano Blockchain. Our protocol augments the chain-selection rule to incorporate a weight-based criterion and features a mechanism for certifying blocks, which increases their weight. Under favorable conditions, in the presence of an adversary controlling less than 25% of the stake, Peras continuously certifies new blocks in rapid succession, thereby significantly accelerating settlement time. In the presence of larger adversaries, Peras' settlement guarantees gracefully fall back to those offered by Ouroboros. A unique feature of our approach is that, compared to prior approaches based on finality gadgets, our settlement acceleration mechanism retains the self-healing and dynamic availability properties of Nakamoto-style protocols.

2012 ACM Subject Classification Security and privacy → Cryptography

Keywords and phrases Blockchain, Settlement, Longest-Chain Consensus

1 Introduction

The development of blockchain protocols since the inception of Bitcoin in 2008 has led to various different designs that differ in their core security assumption, level of resilience in view of low participation or temporal adversarial dominance, as well as in their operational performance metrics such as latency and throughput. The choice of design therefore is a tradeoff across a complex set of dimensions that interplay.

Longest-chain consensus, also referred to as Nakamoto-style consensus in honor of the pseudonymous inventor of Bitcoin, is a permissionless design where parties are participating in a lottery, be it proof-of-work or proof-of-stake, in order to append the next block to the longest chain. The longest chain has the property that there is a common prefix forming, i.e., while the most recent blocks might be transient, the more confirmations a block receives by means of blocks building on top of it, the less likely it will ever be reverted again. The probabilistic and gradual finality that Bitcoin put forth was novel and set it apart from more traditional approaches where finality was seen as something absolute such as in the literature on byzantine fault-tolerance. From an operational viewpoint, block production in Bitcoin, and in its proof-of-stake counterpart Ouroboros, cannot be too fast in relation to the network delay as security is derived from the fact that lottery successes are rare events on the scale of block propagation times. In Cardano, expected block time is 20 seconds, in Bitcoin 10 minutes which impacts both latency and throughput.

The unique benefit of longest-chain consensus, established formally over a sequence of works, is that it satisfies three important robustness properties simultaneously: *safety and liveness under dynamic availability*, *self-healing*, and *the ability to bootstrap from Genesis*. In more detail, longest-chain consensus remains live and safe under dynamic participation, which means the blockchain's growth (and also confirmation times) depends on the participation level. The common-prefix property is satisfied as long as the majority of active participants' resources (measured as hash-power for Bitcion or stake in Cardano). At the same time, even if an attacker, due to say low honest participation, is holding the majority of active resources for some period of time, the protocol is able to return to normalcy after the period has come to an end. While this guarantee with an a priori unlimited attacking duration is true only for longest-chain PoS with static stake, the self-healing guarantee for dynamic-stake (multi-epoch) PoS remains intact if the attack duration is contained in an epoch. Stated differently, given a desired level of robustness against majority attacks, one can parametrize the protocol to satisfy self-healing. Finally, the longest-chain consensus protocols come with a clear set of rules such that newly joining participants can determine the “best chain” with knowledge of only the genesis block. Hence, no checkpointing of recent blocks is needed.

While the security is unmatched, the operational metrics, especially finality, is impacted. While longest-chain consensus allows for user-defined finality, for a very high-assurance that a payment cannot be reverted, one should wait several hours as a lot of confirmations need to build up. This brings us to the core question of this work:

Is it possible to speed up confirmation times in longest-chain consensus while retaining all of the above robustness properties?

The importance and relevance of this question stems from the fact that the properties appear contradictory at first sight: while traditional byzantine fault-tolerant (BFT) protocols [4, 10] and blockchain protocols based on those BFT-techniques like Jolteon [14] or Algorand [5] are in theory able to finalize a block at network speed by achieving a quorum, there is to date no standalone iterated-BFT-based blockchain protocol that is able to both, adjust

the quorum size to the actual participation level, in order to make progress under dynamic participation such as the recent work by Malkhi et al. [16], while at the same time be able to recover from a situation where the honest active participants are in minority. The reason is that this fundamentally requires the algorithm to be prepared to resolve two conflicting finalizations, which implies the algorithm cannot have been in a univalent state with certainty in the first place. This puts Nakamoto-style consensus with its probabilistic guarantees in a better place to achieve the above properties simultaneously. We note in passing and explain in detail further down below in Section 1.2, even solutions where a BFT-protocol is run as an overlay over a Nakamoto-based blockchain like Afgjort [9], the same issue arises if the finality established in the overlay protocol has precedence over the longest-chain rule.

1.1 Our Results

We answer the above question in the affirmative in this work and present Ouroboros Peras, a longest-chain PoS protocol. In comparison to its predecessors, it effectively introduces a parallel process that tries to boost selected blocks from the longest chain and thereby giving them an advantage in the Nakamoto-race. To achieve this, blocks no longer weigh equally (a concept we know from Bitcoin already), but we switch to a weight-based view of blocks: an ordinary block has unit weight, while a boosted block gets an additional weight of B , where B is a configurable parameter. However, in stark contrast to previous designs that introduced “finality overlays” over longest-chain consensus protocols, we don’t overwrite the basic Nakamoto-logic: participants shall always follow the longest chain and a block is settled if it is buried under sufficient weight. In this way, we are not only able to re-establish the standard common-prefix guarantee under honest majority in the dynamic participation model, but we can further support a weight-based bootstrapping method for newly joining parties. On top of this, our design is self-healing as it is able to absorb dishonest-majority attacks of a given strength by appropriately configuring the parameters.

We provide a thorough formal security treatment of the new protocol that turns out to be highly technical. Although our boosting gadget works at a high level as simple as voting for a preferred block, reminiscent of previous attempts that we survey in Section 1.2, this additional votes interfere with the “plain” Nakamoto-execution in a non-trivial way. Hence, while intuitively, a block with high support gets indeed boosted, our formal statements must ensure that the votes cannot be abused in either boosting only adversarial chains, or waste honest participants’s slots on chains that are inferior to the heaviest chain. In fact, this is the reason why we allow our boosting gadget to “cool down” for a while when failed boosts are observed. This is critical to establish safety and liveness for the combined overlay, since failed attempts to boost blocks might play in favor of the adversary.

1.2 Related Work

In the academic literature, the task of boosting the finality guarantees of a Nakamoto-style blockchain has been considered in a sequence of papers that date back to Thunderella [19], Polkadot’s Grandpa protocol [20], Casper [3], as well as Afgjort [9]. The overarching idea of this sequence of works is that in a typical, real-life execution, the *actual* common prefix of the underlying Nakamoto-chain is actually much longer than what the security analysis indicates—in which case the finality gadget’s task is to identify this common prefix and to finalize it. We detail the comparison to each class of protocols below.

A second, seemingly related line of work are the Ebb-and-Flow protocols [17], which, however, do not aim at finalizing the Nakamoto-chain, but at combining different security

guarantees in one protocol. An Ebb-and-Flow protocol thus provides the user with an adaptive choice of what level of finality they seek in an application, such as picking either a safety-first approach (and essentially don't observe a reverted transaction ever even if the network turns bad), or go with a liveness-favoring rule with a probabilistic guarantee a la Nakamoto, where transactions could get reverted in case of network disruptions. In our comparison below, we focus mainly on the the finality-gadgets that strive to boost finalization times of Nakamoto-blockchains, but include relevant works of hybrid consensus and checkpointing gadgets too.

Afgjort finality layer. Afgjort's approach is to let a committee-based BA protocol try to reach agreement on which block in the common-prefix has high support. If successful, the block is declared as final and the chain-selection rule of the Nakamoto-blockchain is changed to comply with that decision, i.e., any blockchain gets invalidated that does not go through finalized blocks. This design choice has two implications that we rectify with our solution: first, changing Nakamoto chain-selection to alway comply with finalized blocks implies that any equivocation from the finalization committee—due to adversarial dominance which is not an extremely unlikely event for those committee sizes occurring in practice—leads to a permanent split of parties, rendering the combined protocol into a protocol that only tolerates a corruption threshold of $1/3$, and new features would be needed to return to normalcy after the assumption is violated. The second implication is lack of resilience against dynamic participation: if the finality gadget is stalled for an extended period of time due to committee members being temporarily unavailable, the underlying Nakamoto-chain would still grow substantially. However, if the committee members come back online, there is the risk that they finalize an old block that is actually not on the common prefix of parties running the Nakamoto-chain. Since the design favors the finalization block, a large portion of the chain will be reverted even in a setting without a dishonest (relative) majority, which appears undesirable.

In contrast to their solution, our solution does not over-rule the Nakamoto-chain. Our solution tries to selectively boost the weight of blocks—giving them an advantage to win—but the final call is done by the Nakamoto-blockchain. We retain the honest majority threshold from the underlying blockchain, and further inherit the self-healing guarantees [2]. Furthermore, if our voting committee gets stalled, our gadget gets temporarily turned off for sufficiently long, such that a very late-finish of a previous voting attempt would not lead to a reorganization of the chain, since the weight they contribute is too little to catch up with the longest chain at that time.

Grandpa finalization gadget. Grandpa is an elegant idea for finalizing blocks of an underlying Longest-chain protocol. The idea is that parties in the finalization committee vote for the tip of their longest chain. Votes apply “recursively” and the collection of all votes can be used as an indicator on which blocks in the blocktree are supported by what fraction of the committee. If a block crosses a threshold, it will be marked as final and the longest-chain protocol complies with that decision in its chain selection rule as above. Note that voting always succeeds under full participation due to the common-prefix guarantee of the underlying blockchain. In comparison to Grandpa, our solution removes two specific concerns: first, as in the case of Afgjort, the protocol overwrites the longest-chain chain selection rule, which downgrades the protocol to $1/3$ security, the threshold of the finality layer, and once violated, the blockchain would fork permanently without additional intervention. Second, Grandpa assumes full participation, and it appears that under temporal drop of participation, the

protocol risks of getting stalled. Furthermore, in such a situation, it is up to the adversary to release votes to resolve the situation. However, at this point, the adversary has the power to tip the scales adaptively to decide whether an “old block” is finalized (which always exists) or a “recent block”. This is a danger to chain quality, as the adversary is given enough slack to adaptively discourage honestly generated blocks and wait to finalize adversarial blocks in a next round.

In contrast to that, our solution does not have the above disadvantages. In addition to the above comparison with Afgjort, our approach does not admit such a slack to the adversary since votes are bound to a block. Furthermore, as in Grandpa, in the optimistic case, the finalization rounds are at least as fast as chain-growth, and in case of failed vote, we retain at least the chain quality of the Nakamoto-Blockchain. More broadly speaking, our overall protocol retains security under fluctuating and low participation.

Thunderella and hybrid consensus. Hybrid consensus [18] and the related blockchain protocol Thunderella, is a closely related notion to the concept of finality gadgets. The main conceptual difference between finality gadgets and hybrid consensus is that a finality gadget is trying to equip the blockchain protocol itself with a fast (and optimistic) path to settlement, but the blockchain remains the only ledger, without the need to sanitize the potentially different views of the fast and the slow settlement method [17]. However, when it comes to concrete techniques used, the two problems also share similarities and a finality layer can typically be understood as providing some sort of hybrid-consensus, however, not producing their own blocks, but using existing blocks from the Nakamoto-chain. If finality is reached for a block on the Nakamoto-chain, this block can further be used to bootstrap a new committee, and no dependency on the worst-case settlement of the blockchain arises from committee selection [9].

When it comes to the security model, our solution and Thunderella share a few similarities and a couple of differences. First and foremost, our design does not use a public leader scheduled and is designed with full adaptive security in mind. While Thunderella could switch to an adaptive security model, this would include rotating leaders and necessarily trigger a cool-down when a malicious leader is speaking which is proportional to the actual corruption threshold. In contrast, our solution comes with a set of parameters that allows to make an informed tradeoff between the probability of actually cooling down (when the system is up and running against an adversary of a certain strength) and the settlement speed perceived by a transaction on the optimistic path.

Casper, Ebb-and-Flow, Goldfish. Casper [3] is presumably the first finality gadget proposed tailored to the Ethereum blockchain and based on a public committee that locks coins in order to be eligible to assist in finalizing (non-recent) blocks of an underlay chain, and in this regard belongs to the category of checkpointing layers, more formally known these days as Ebb-and-Flow protocols [17]. Such a layered approach ensures that the blockchain protocol maintains two ledgers: the dynamically available ledger (LMD GHOST in case of Ethereum, or some other longest-chain protocol [17, 6]), and the accountable ledger which is a finalized prefix. To obtain a provably secure combination for the two-layer approach taken by Ethereum, Goldfish has been presented as a provably secure underlay following the LMD-GHOST approach. What makes Goldfish interesting in our comparison is that it does not only offer what is called standard k -deep confirmations of a prefix (against an adaptive adversary), but it contains an optimistic fast path to confirmations under good participation, honesty, and network conditions. While, of course, Goldfish is a consensus protocol on its

own, and not an overlay over a Nakamoto-blockchain, it is interesting to observe some of the features that do make its approach not directly applicable to our setting due to our goal of achieving self-healing and bootstrapping from Genesis. First, the protocol, and extensions of it [7], are based on a short-term view of votes (i.e., votes expire) in a such a way that if the set of unexpired votes is not dominated by a (relative) honest majority, this would lead to a protocol failure. Second, the Goldfish design does not specify a bootstrapping mechanism solely based on the Genesis block (under stake shift) and it remains open how to achieve it under the security model put forth in those papers.

Tezos. Due to the techniques used in our work, it is worth mentioning that the act of voting for a proposed block can also be used in other contexts for related but essentially different reasons. The Tezos blockchain¹ uses votes as indications of support, which allow a next block producer to publish a block quicker, thereby reducing blocktime. We note in passing that other uses of votes for blocks have been proposed in Tezos for scalability reasons, which culminated in the above mentioned approach.

2 Notation and Model

Basic notation. For a string $w = w_1 \dots w_N \in \Sigma^N$ we denote by $w_{k\lceil} := w_1 \dots w_k$ its prefix of length k . We denote by ε the empty string.

Time. For convenience, we model time as progressing in discrete steps called *slots* indexed with natural numbers $\mathbb{N} = \{1, 2, \dots\}$.

Network. We adopt a traditional network model for the analysis of distributed algorithms characterized by a single parameter Δ ; the model guarantees that whenever an honest node sends or receives a message m in slot s , any other honest node receives m no later than at the beginning of slot $s + \Delta + 1$. For convenience, and in keeping with previous work, we assume that parties diffuse full chains in this manner; of course a practical implementation would optimize message length by strategically transmitting only those blocks necessary to catch up a peer. Note that whenever a message m is injected for diffusion, the adversary is activated who may deliver it to other honest parties at any time subject only to the Δ restriction. (Note also that adversarial blocks may be delivered with arbitrary delays.) Thus the model provides no guarantee of common serialization.

Protocol executions. Given a consensus protocol Π , an environment \mathcal{Z} and an adversary \mathcal{A} , we define an execution as the random variable that contains the sequence of states of all activated parties in every slot. The environment \mathcal{Z} activates a party by providing some transactions to be processed as well as the index of the current slot; it also activates the adversary \mathcal{A} which is assumed to be activated always at the beginning of a slot before other parties are activated as well as after all parties have been activated in a slot. Note that the environment advances slots in a monotonically increasing manner, i.e., once a party is activated at slot i , all other parties will also be activated in slot i or larger. Parties use the network and the clock functionalities and terminate their activation by performing any updates dictated by Π in their internal state which is assumed to defined a transaction ledger

¹ <https://tezos.com/>

data structure that is in the form of a chain of blocks of transactions. Specifically, each party’s state contains a chain C that is a sequence of blocks B , where each B is a sequence of transactions $\text{tx}_1 \text{tx}_2 \text{tx}_3 \dots$. The length of the chain is the number of blocks it contains. All valid chains are assumed to share the same genesis block $B_0 = G$ as a common prefix. The adversary, besides interfering with message delivery, can also corrupt parties by issuing a special corruption instruction at any time during the execution. Once a corruption takes place, the adversary is activated instead of the party and has access to the internal state of the party. Given any execution it is possible to map it to a string which determines the number of honest and adversarial parties that have been activated.

Consistency and Liveness. In each slot, every party outputs (C', C) , where C' is the part of C that it considers “settled.” These chains must satisfy *consistency* and *liveness*. These are defined via the following adverse events:

- Consistency failure is a predicate $\text{ConsFail}(\ell_1, \ell_2)$ defined for two slots $\ell_1 \leq \ell_2$ that is true if and only if there is an honest party in slot ℓ_1 that outputs a chain C'_1 and (a) the same honest party in slot ℓ_2 outputs a chain C'_2 that is not a prefix of C'_1 or (b) the same or a different honest party outputs a chain C'_2 in slot ℓ_2 such that neither C'_1 nor C'_2 is a prefix of the other.
- Liveness failure with parameter u is a predicate $\text{LiveFail}_u(\ell)$ for a slot ℓ that is true if and only if a transaction tx was given for inclusion by the environment to all honest parties for u slots starting at slot ℓ but some honest party in slot $\ell + u$ outputs C that does not contain tx .

► **Definition 1.** A blockchain protocol Π satisfies consistency and liveness with error ϵ_{con} and ϵ_{liv} respectively if and only if for any L polynomial in security parameter κ , the predicates $\text{ConsFail}(\ell_1, \ell_2)$ and $\text{LiveFail}_u(\ell)$ for any $\ell, \ell_1, \ell_2 \leq L$ hold with probability ϵ_{con} and ϵ_{liv} respectively.

Self-healing. Given a protocol execution, a function $\text{resrc}(\ell)$ returns a pair in \mathbb{R}^2 that represents the amount of “resources” controlled by the honest parties and the adversarial ones. We denote $\text{resrc}^{\mathcal{H}}$ and $\text{resrc}^{\mathcal{A}}$ the resources of honest and adversarial parties respectively. A “spike” occurs in a slot when $b_\ell = \text{resrc}^{\mathcal{A}}(\ell) - \text{resrc}^{\mathcal{H}}(\ell) > 0$. A spike-attack is a consecutive sequence of slots $[s_l, s_u]$ where this condition holds. We note that in this paper, we consider this situation as arising due to fluctuating participation, as a consequence of very low honest participation resulting in a relative majority for the adversary, but not in an absolute (adversarial) majority w.r.t. the underlying resource.

On the other hand, we say that the honest parties have advantage $\delta > 0$ in a slot ℓ when $(1 - \delta)\text{resrc}^{\mathcal{H}}(\ell) > \text{resrc}^{\mathcal{A}}(\ell)$. A protocol is said to satisfy self-healing with budget \mathcal{B} provided that there exists a time window $v(\mathcal{B})$ such that, relative to the attack window $[s_l, s_u]$, the (i) protocol satisfies consistency and liveness except possibly during rounds $[s_l - v(\mathcal{B}), s_u + v(\mathcal{B})]$, (ii) $\sum_{i=s_l}^{\ell} b_i \leq \mathcal{B}$ and (iii) for any $\ell' > s_u$ it holds that the honest parties have advantage δ . This captures that except in a contained region of the execution, the protocol enjoys the normal safety and liveness properties. As shown in [2], when different attack regions are sufficiently far apart, this definition applies to an execution with multiple spikes that can be treated in isolation.

3 The Peras Protocol

3.1 Main Idea

The Peras protocol is a proof-of-stake, Nakamoto-style blockchain with a voting component designed to expedite settlement in scenarios where there is an optimistic overlap, namely when parties share a lengthy common prefix and their chains diverge only near the end.

Approach. Participants vote on the tip of the chain that results from excluding all blocks that are newer than a specified number of L slots. If, as a result of this voting, a single block receives more than a designated threshold τ of votes—earning what is termed a “certificate”—that block is awarded additional *weight* B , a *boost* (where the standard weight of a block is 1). Correspondingly, parties now pick the *heaviest* rather than the longest chain.

The threshold τ is set high enough to prevent multiple blocks from receiving this boost. Specifically, τ is chosen to be $3/4$ of the total votes, based on a standard quorum intersection argument against an attacker controlling a fraction $\alpha < 1/2$ of the stake.²

However, in such a regime, honest parties cannot independently produce certificates since the threshold is above $1/2$. Further, even if the threshold were lower, it would be possible for the distribution of honest votes to be such that no single block achieves the threshold with only honest votes. This opens the possibility for the attacker to execute “certificate-up-the-sleeve” attacks by withholding adversarial votes needed for a block to meet the threshold and releasing them only after honest parties have constructed a standard length- B Nakamoto chain that excludes the boosted block. This strategy can lead to two chains of equal weight diverging by weight B . By repeating this tactic, the attacker can create a fork of arbitrary weight, thereby compromising the protocol’s safety.

Cooldown periods. To counteract these risks, the Peras protocol employs a structured voting process with rounds of a fixed length U . If no certificate is generated within a voting round, the protocol initiates a cooldown phase during which voting is temporarily suspended.

During the initial “healing-and-certificate-inclusion” phase of the cooldown period, parties continue with standard Nakamoto block creation until the potential advantage of B that the adversary could gain with a certificate is neutralized. Simultaneously, parties are required to submit the latest certificate they are aware of to the chain. Moreover, there is an age limit for the inclusion of certificates during this phase. In the second phase, parties wait until the blocks from the first phase have stabilized. Together with the age limit for certificate inclusion, this guarantees that parties use the most recent certificate on the chain as an anchor to achieve consensus on when to resume the voting process, thereby preventing the adversary from exploiting any undisclosed certificates to cause further desynchronization.

Note that there is a tradeoff between the speed of settlement and the duration of the cooldown period. Specifically, the larger the value of B , the quicker the settlement process can potentially occur. However, a larger B also necessitates a longer cooldown period, as the the length of the healing phase is directly related to B .

² Throughout this paper, it is assumed that the majority of every committee is honest. This can be approximated (except with negligible probability) by choosing parameter so that committees are large enough).

3.2 Protocol Description

The protocol is outlined in Figure 1 and it builds on top of the Ouroboros Protocol as in [1], which we refer the reader to for concepts like slot leadership or the definition of forward-secure signatures.

Blocks. The protocol structures time into equal-length intervals known as *slots*. During each slot, participants elect themselves as leaders using a standard VRF-based local sortition mechanism. A leader is tasked with extending the heaviest chain they are aware of with a new block B . Each block B is a tuple represented as $B = (s, P, h, \text{cert}, \pi, p, \sigma)$, where s indicates the slot index in which the block was produced, P identifies the slot leader who produced the block, h is the hash of the block’s parent, cert is a certificate (further explained below), π is the proof of slot leadership, p is the transaction data, and σ is a signature by P on the rest of B .

A chain is a non-empty sequence of blocks linked by hash pointers, beginning with a distinguished genesis block G . The *length* of a chain, denoted $\text{len}(C)$, is equal to the number of blocks in the chain, excluding the genesis block. C_{genesis} denotes the unique chain containing only the genesis block G .

Voting rounds and committees. Building on the intuition above, the protocol also segments time into voting rounds (or simply rounds), each comprising U slots. These rounds are sequentially numbered $r = 0, 1, 2, \dots$, and voting round r corresponds to slots

$$rU, rU + 1, rU + 2, \dots, (r + 1)U - 1.$$

No votes are cast in round 0, which is successful by definition.

The function $\text{rnd}(s) := \lfloor s/U \rfloor$ determines the round to which a given slot s belongs, while $\text{lastSlt}(r) := (r + 1) \cdot U - 1$ denotes the final slot of round r .

In each voting round r , a committee \mathcal{C}_r is selected, again through VRF-based sortition, with the protocol parameter S dictating the expected committee size. Each committee member is permitted to cast a single vote during their respective voting round.

Votes and Certificates. A vote is a tuple $v = (r, P, h, \pi, \sigma)$, where r is the index of the voting round the vote belongs to, P identifies the voting-committee member casting the vote, h is a hash of the block voted for, π is the committee-membership proof, and σ is a forward-secure signature by P on the rest of v .

A certificate is a collection of votes from a single voting round, from at least a τ -fraction of the expected committee size, and supporting the same block. In other words, a certificate contains $\tau \cdot S$ votes for the same block from the same voting round. At the beginning of the cooldown phase, a party will include the latest certificate they know of in the blocks they create (unless some other party has already done so). There is an age limit A for certificate inclusion in order to ensure that by the end of the cooldown parties have agreement on which the latest certificate on the chain is.

Chain weight. Each party P assigns a certain weight to every chain C , based on C ’s length and all certificates that vote for blocks in C that P has seen so far (and thus stored in a local list Certs). Let $\text{certCount}_P(C)$ denote the number of such certificates, i.e.,

$$\text{certCount}_P(C) := |\{\text{cert} \in \text{Certs} : \text{cert} \text{ votes for a block on } C\}|.$$

Protocol Ouroboros Peras

Parameters: U : round length; A : certificate expiration age; R : length of chain-ignorance period; K : length of cooldown period; L, D minimal and maximal lookback parameter for voting candidates; T_{CS} time-based settlement parameter.

Variables: The protocol keeps track of the following variables, initialized to the values below:

- $C_{pref} \leftarrow C_{genesis}$: preferred chain;
- $\mathcal{C} \leftarrow \{C_{genesis}\}$: set of chains;
- $\mathcal{V} \leftarrow \emptyset$: set of votes;
- $Certs \leftarrow \emptyset$: set of certificates;
- $cert' \leftarrow cert_{genesis}$: the latest certificate seen;
- $cert^* \leftarrow cert_{genesis}$: the latest certificate on chain.

Fetching: At the beginning of each slot:

1. Fetch new chains \mathcal{C}_{new} and votes \mathcal{V}_{new} .
2. Add any new chains in \mathcal{C}_{new} to \mathcal{C} , add any new certificates contained in chains in \mathcal{C}_{new} to $Certs$.
3. Add \mathcal{V}_{new} to \mathcal{V} and turn any new quorum in \mathcal{V} into a certificate $cert$ and add $cert$ to $Certs$.
4. Set C_{pref} to the heaviest (w.r.t. $Wt_P(\cdot)$) valid chain in \mathcal{C} .
5. Set $cert'$ to the certificate with the highest round number in $Certs$.
6. Set $cert^*$ to the certificate with the highest round number on C_{pref} .

Block creation: Whenever party P is slot leader in a slot s , belonging to some round r :

1. Create a new block
 $B = (s, P, h, cert, \pi, p, \sigma)$, where
 - h is the hash of the last block in C_{pref} ,
 - $cert$ is set to $cert'$ if
 - a. there is no round- $(r - 2)$ certificate in $Certs$, and
 - b. $r - \text{round}(cert') \leq A$, and
 - c. $\text{round}(cert') > \text{round}(cert^*)$, and to \perp otherwise,
 - π is the slot-leadership proof,
 - p is a transaction payload, and

- σ is a signature by P on the rest of B .

2. Extend C_{pref} by B , add the new C_{pref} to \mathcal{C} and diffuse it.

Voting: Party P does the following at the beginning of each voting round r :

1. Let B be the youngest block at least L slots old on C_{pref} but at most D slots old. If no such block exists, exit this procedure.
2. If party P is (voting) committee member in a round r ,

(VR-1A) $\text{round}(cert') = r - 1$ and $cert'$ was received at least Δ before the end of round $r - 1$, and

(VR-1B) B extends the block certified by $cert'$,

or

(VR-2A) $r \geq \text{round}(cert') + R$, and

(VR-2B) $r = \text{round}(cert^*) + cK$ for some $c > 0$,

then create a vote $v = (r, P, h, \pi, \sigma)$, where

- h is the hash of B ,
- π is the slot-leadership proof, and
- σ is a signature on the rest of v .

Add v to \mathcal{V} and diffuse it.

Chain output: In each slot, output (C, C_{pref}) , where C is obtained as follows:

1. Let $\rho \in \{0, 1\}^*$ be a string such that $\rho_i = 1$ if and only if a round- i certificate has been seen (locally).
2. Let ℓ be the maximum such that
 - (I) $\ell + D$ is followed by at least $\lceil T_{CS}/B \rceil$ complete rounds i with $\rho_i = 1$ or
 - (II) ℓ is followed by at least $T_{CS} + K$ complete rounds i with $\rho_i = 0$.
3. C is C_{pref} with all blocks after ℓ pruned.

Figure 1 The Peras Protocol.

Then, the *weight of the chain* C in P 's view is

$$\text{Wt}_P(C) := \text{len}(C) + B \cdot \text{certCount}_P(C)$$

for a protocol parameter B . At any time, the preferred chain of a party is the heaviest chain they know of.

Voting rule. In each voting round r , committee members from $\mathcal{C}(r)$ cast a vote for the oldest block B with age between D and L on their preferred chain if and only if the following composite condition is met (if there is no such block, no vote is cast):

$$(\text{VR-1A}) \wedge (\text{VR-1B}) \vee (\text{VR-2A}) \wedge (\text{VR-2B}),$$

where

- (VR-1A) P has seen a certificate cert_{r-1} for round $r-1$ within the first Δ slots of round $r-1$,
- (VR-1B) B extends the block certified by cert_{r-1} ,
- (VR-2A) the last certificate P has seen is from a round at least R rounds back, and
- (VR-2B) the last certificate included in P 's current chain is from a round exactly cK rounds ago for some integer $c \geq 0$.

The intuition behind this voting rule is as follows: Rule (VR-1A) serves as the primary criterion for deciding whether an ongoing fast-settlement phase continues in the current round: a committee member participates in the current round only if they have observed a certificate from the previous round, received Δ before the end of the round.³ Rule (VR-1B) ensures that certificates from consecutive successful voting rounds are built upon one another, which is essential for accelerating settlement: only if this is the case, will each successful voting round following some block B add the additional weight B to B .

To comprehend the remaining two rules, consider the scenario where the first two conditions are false, indicative of a cooldown period: Rule (VR-2A) prohibits committee members from using the chain to identify an anchor certificate during the initial R rounds of the cooldown, where R is a predefined parameter. This restriction is necessary because the blockchain might be in a state of disarray during this first phase of cooldown, due to a potential certificate up the adversary's sleeve. Finally, Rule (VR-2B) is the actual restart condition: a restart occurs cK rounds after the round number of the latest certificate on chain, for some $c > 0$. The reason for considering values $c > 1$ as well is that there may be restart rounds that do not lead to a certificate (followed immediately by another cooldown), and therefore the certificate with the highest round number on chain might be from $2K, 3K$, etc. rounds ago.

Chain output. In every slot, parties cut off weight W from their preferred chain and output the resulting chain. This cutting off occurs by gradually removing blocks, including their certificates, until weight W has been removed.

³ The main reason for the Δ -requirement is that it simplifies the analysis somewhat.

Parameters. The above suggests the following parameterizations for Peras, where T_{HCI} and T_{CS} are parameters chosen for the Nakamoto protocol to provide healing from a failed voting round, ensure the presence of at least one honest block, and achieving settlement, respectively.

- $U \geq 5\Delta$ (in slots): voting round length.
- $A = T_{\text{HCI}}$ (in rounds): certificate expiration age.
- $T_{\text{HCI}} \leq R \leq K - 2$ (in rounds): length of chain-ignorance period.
- $K \geq T_{\text{HCI}} + T_{\text{CS}} + 1$ (in rounds): length of cooldown period.

4 Protocol Analysis

4.1 Lotteries and Characteristic Strings

Two independent randomized party-selection procedures play important roles in our protocol; we call them *lotteries*. The first lottery, referred to as the *leader lottery*, selects for each slot a collection of *slot leaders* that are allowed to create a block in that slot. The second lottery, called the *voter lottery*, selects committee members (i.e., *voters*) for each voting round. Both of these lotteries are implemented using standard private sortition methods [5]. The leader lottery is parameterized so that the expected number of elected slot leaders is a small constant and, in particular, is relatively likely to generate a slot with a single leader; this determines the dynamics of the Nakamoto consensus process. The voter lottery is parameterized to generate a larger committee used for the fast settlement process.

We use so-called *characteristic strings* to indicate a summary of the outcomes of these two independent lotteries. In particular, we use a *leader string* and a *voting string* to record the outcomes of the leader and the voter lottery, respectively; as detailed below.

Leader string. The leader lottery is reflected by the *leader string* over the alphabet $\Sigma = \mathbb{N} \times \mathbb{N}$; specifically, an execution over N slots gives rise to a leader string $w = w_1 \dots w_N \in \Sigma^N$ where, intuitively, each symbol $w_i = (h_i, a_i) \in \Sigma$ indicates that h_i honest parties and a_i adversarial parties were eligible slot leaders for slot i .

For a leader string $w = w_1 \dots w_n \in \Sigma^n$ where each $w_i = (h_i, a_i) \in \mathbb{N} \times \mathbb{N}$, we define $\#_h(w) := \sum_{i=1}^n h_i$ and similarly $\#_a(w) := \sum_{i=1}^n a_i$, i.e., the total number of honest and adversarial slot leaders over a sequence of slots corresponding to w . Moreover, we sometimes make use of a similar quantity $\#_{[a]}(w)$ that denotes the number of symbols in w with positive second coordinate, i.e.,

$$\#_{[a]}(w) := |\{i \in \{1, \dots, n\} : w_i \notin \mathbb{N} \times \{0\}\}| .$$

Similarly, let

$$\#_{[ha]}(w) := |\{i \in \{1, \dots, n\} : w_i \neq (0, 0)\}| .$$

Voting string. The outcome of the voter lottery is captured by a *voting string*. A voting string is a string $\sigma = \sigma_1 \sigma_2 \dots \in \{0, ?, 1\}^*$, with implicit understanding that $\sigma_0 = 1$ represents the genesis round, and for $i \geq 1$,

$$\sigma_i = \begin{cases} 1 & \text{if at least one party saw a round-}i \text{ certificate before the end of round } i, \\ ? & \text{else if at least one party voted in round } i, \\ 0 & \text{otherwise.} \end{cases}$$

We sometimes refer to a round i as an s -round if $\sigma_i = s$, for any $s \in \{1, ?, 0\}$.

We refer to leader strings and voting strings jointly as characteristic strings.

Executions. We say that a leader string w and a voting string σ have *consistent duration* if $\text{rnd}(|w|) = |\sigma|$, and in such case we call the pair (w, σ) an *execution* and $|w|$ is its *length in slots*. (Notice that the length of an execution in slots does not need to be an integer multiple of U .) For an execution (w, σ) with $|w| = N$ and an index $i \in \{0, \dots, N\}$, we denote by

$$(w, \sigma)_{i\lceil} := (w_{i\lceil}, \sigma_{\text{rnd}(i)\lceil})$$

the *prefix execution* covering the initial i slots of (w, σ) . Conversely, we call the execution (w, σ) an *extension* of the execution $(w, \sigma)_{i\lceil}$.

4.2 Blocktrees with certificates

We now define a tree-shaped structure to capture important aspects of the execution of our protocol. For a vertex v in a tree F , let $\text{desc}_F(v)$ denote the set of all descendants (direct and indirect) of v excluding v itself, and $\text{desc}_F^*(v) := \text{desc}_F(v) \cup \{v\}$.

► **Definition 2** (Blocktree with certificates). *Let (w, σ) be an execution with $|w| = N$ and $|\sigma| = M$, i.e., $\text{rnd}(N) = M$. A blocktree with certificates for an execution (w, σ) is a directed, rooted tree $F = (V, E)$ with three labeling functions:*

- $l_{\#} : V \rightarrow \{0, \dots, N\}$ where $l_{\#}(v)$ is called the slot label of v and represents the slot in which the corresponding block was created;
- $l_c : V \rightarrow 2^{\{1, \dots, M\}}$ where $l_c(v)$ is called the certificate label of v and records the set of voting rounds in which the block corresponding to v was certified;
- $l_{\text{type}} : V \rightarrow \{\mathbf{h}, \mathbf{a}\}$ where $l_{\text{type}}(v)$ is referred to as the type of the vertex: when $l_{\text{type}}(v) = \mathbf{h}$, we say that the vertex is honest; otherwise it is adversarial.

Edges are directed “away from” the root so that there is a unique directed path from the root to any vertex, and the tree must satisfy the following axioms:

Time consistency:

- (T1) the root $r \in V$ is honest and is the only vertex with slot label $l_{\#}(r) = 0$;
- (T2) slot and certificate labels along any directed path are strictly increasing: for each $v \in V$ and $v' \in \text{desc}_F(v)$, we have $l_{\#}(v) < l_{\#}(v')$ and $c \in l_c(v) \wedge c' \in l_c(v') \Rightarrow c < c'$;
- (T3) for each $v \in V$ and $r \in l_c(v)$, we have $l_{\#}(v) \leq \text{lastSlt}(r - 1)$;

Block and certificate counts:

- (C1) if $w_i = (h_i, a_i)$ then there are exactly h_i honest vertices of F with the slot label i and if the number of adversarial vertices with slot label i is nonzero then $a_i > 0$;
- (C2) if $\sigma_r = 0$ then there is no $v \in V$ with $r \in l_c(v)$, otherwise there is at most one such $v \in V$;
- (C3) if $\sigma_r = 1$ and $\text{lastSlt}(r - 1) + 1 + \Delta \leq N$ then $\exists v \in V: r \in l_c(v)$.

We write $F \vdash (w, \sigma)$ to indicate that F is a blocktree with certificates for an execution (w, σ) . As notational shorthands, we define

$$\mathcal{H}(F) := \{v \in V : l_{\text{type}}(v) = \mathbf{h}\} \text{ and}$$

$$\mathcal{C}(F) := \{r \in [M] : \exists v \in V \text{ such that } r \in l_c(v)\}$$

to refer to the sets of all honest vertices and all rounds that produced a certificate, respectively. For simplicity of notation, we assume $\mathcal{H}(F) \cap \mathcal{C}(F) = \emptyset$. We write \mathcal{H} (resp. \mathcal{C}) when F is clear from the context. We sometimes refer to an index $c \in \mathcal{C}$ as a certificate; this is justified as each round produces at most one certificate (C2). We talk about a ? -certificate (resp., 1-certificate) if $\sigma(c) = \text{?}$ (resp., $\sigma(c) = 1$).

We will refer to blocktrees with certificates simply as *trees* when the context is clear. Unless explicitly stated otherwise, in the rest of the paper we reserve the term “tree” for the above structure, as opposed to the underlying graph-theoretic notion.

It is easy to see the correspondence between the above axioms and the constraints imposed in the protocol execution. In particular, axiom (T1) postulates the existence of the genesis block; axioms (T2)–(T3) guarantee the time-consistency of the execution, namely that vertices and certificates only appear on top of earlier vertices and certificates. Axiom (C1) captures that an honest party uses a leader-lottery success to produce exactly one block, while the adversary might use it to produce arbitrarily many blocks (or none at all). Similarly, axioms (C2)–(C3) maintain that the blocktree contains the correct number of certificates: none for 0-rounds, at most one for a ? -round, and exactly one for any concluded 1-round.

Looking ahead, we will formalize additional properties of blocktrees—that are guaranteed to be satisfied by our protocol’s execution—in Definition 10. Towards that, we need to establish some necessary notation.

► **Definition 3** (Certified vertices). *A vertex v is called certified if $\mathsf{I}_c(v) \neq \emptyset$, and in particular v is called 1-certified if $\exists r \in \mathsf{I}_c(v) : \sigma_r = 1$.*

► **Definition 4** (Subtrees and restrictions). *Let $F \vdash (w, \sigma)$, let execution (w', σ') be an extension of (w, σ) and $F' \vdash (w', \sigma')$. We say that F is a subtree of F' , denoted $F \sqsubseteq F'$, if F is a subgraph of F' satisfying that for each $v \in F$:*

- (i) v ’s $\mathsf{I}_\#$ - and I_{type} -labels are identical in F and F' ; and
- (ii) v ’s I_c -label in F is a subset of its I_c -label in F' ;

In particular, a subtree F is called a restriction of F' to a slot s , denoted $F_{s]}$, if

- (i) F contains exactly all vertices $v \in F'$ such that $\mathsf{I}_\#(v) \leq s$;
- (ii) for each $v \in F$, v ’s I_c -label in F is the intersection of its I_c -label in F' with the set $[s]$.

An individual blockchain constructed during the protocol execution is represented by the notion of a *chain*, defined next.

► **Definition 5** (Chains). *A path in a tree F originating at the root is called a chain (note that a chain does not necessarily terminate at a leaf). As there is a one-to-one correspondence between directed paths from the root and vertices of a tree, we routinely overload notation so that it applies to both chains and vertices. Specifically, we let $\mathsf{len}(T)$ denote the length of the chain, equal to the number of edges on the path; hence $\mathsf{len}(v)$ also denotes the depth of a vertex. We sometimes emphasize the tree F from which v is drawn by writing $\mathsf{len}_F(v)$. Likewise, we let $\mathsf{I}_\#(\cdot)$ apply to chains by defining $\mathsf{I}_\#(T) := \mathsf{I}_\#(v)$, where v is the terminal vertex on the chain T . We say that a chain is honest if the last vertex of the chain is honest.*

► **Definition 6** (Weight function). *For a tree F and a chain T in F we define the weight of T in F as*

$$\mathsf{wt}_F(T) := \mathsf{len}_F(T) + B \cdot \sum_{u \in T} |\mathsf{I}_c(u)| ,$$

where the sum goes over all vertices of $u \in T$. We overload the notation and define

$$\text{wt}(F) := \max_{T \text{ chain in } F} \text{wt}_F(T).$$

Note that the weight function $\text{wt}(\cdot)$ is intended to model the function $\text{Wt}(\cdot)$ used in our protocol (cf. Section 3), we maintain the notational distinction for clarity.

In the execution of our protocol, each action of an honest party—creating a block or casting a vote—is implicitly *justified* by that honest party’s view: the set of blocks and certificates it is aware of at the moment of taking the action. Intuitively, the honest party’s action must be consistent with this view: it creates a block by extending the heaviest chain it sees, or votes for a block lying on this chain. We make this notion of a justification explicit in the following definition, and formulate the implied constraints as axioms in Def. 10, after we define all the necessary tools to express them.

► **Definition 7** (Justifications). *Given a blocktree with certificates $F \vdash (w, \sigma)$ and a slot $s \in \{1, \dots, |w|\}$, a justification J for slot s in F is a subtree of the restriction of F to slot $s-1$, i.e., $J \sqsubseteq F_{s-1}$. When F is clear from the context, we write $\text{jslot}(J) = s$ to denote the slot for which J is a justification. We say that F is a tree with justifications if it is equipped with two sets of justifications $(J_v)_{v \in \mathcal{H}(F)}$ and $(J_c)_{c \in \mathcal{C}(F)}$, where*

- for each $v \in \mathcal{H}(F)$, J_v is a justification for slot $\text{I}_{\#}(v)$ in F ; and
- for each $c \in \mathcal{C}(F)$, J_c is a justification for slot $\text{lastSlt}(c-1) + 1$ in F .

► **Definition 8** (Propagation). *Consider a tree $F \vdash (w, \sigma)$ with justifications $(J_v)_{v \in \mathcal{H}}$ and $(J_c)_{c \in \mathcal{C}}$. We say that:*

- a justification J is propagated in F if $\text{jslot}(J) \leq |w| - \Delta$;
- a 1-certificate $c \in \mathcal{C}(F)$ is propagated in F if $\text{lastSlt}(c-1) + 1 \leq |w| - \Delta$.

► **Definition 9** (Public subtree). *Consider a tree $F \vdash (w, \sigma)$ with justifications $(J_v)_{v \in \mathcal{H}}$ and $(J_c)_{c \in \mathcal{C}}$. We denote by \overline{F} the publicly known (or simply public) subtree of F , which is obtained by the following procedure:*

- (i) Remove all vertices v with $\text{I}_{\#}(v) > |w| - \Delta$ and adjacent edges.
- (ii) For each remaining v , remove from $\text{I}_c(v)$ all $?$ -certificates and all unpropagated 1-certificates.
- (iii) Iteratively remove all adversarial leaves (and adjacent edges) that are not 1-certified.
- (iv) Add back all vertices, edges, and I_c -labels that appear in any propagated justification.

► **Definition 10** (Protocol-respecting trees). *A blocktree $F \vdash (w, \sigma)$ with justifications $(J_v)_{v \in \mathcal{H}}$ and $(J_c)_{c \in \mathcal{C}}$ is called protocol-respecting if it additionally satisfies the following axioms:*

Block and certificate placement:

- (P1) *Each justification J satisfies $\overline{F}_{(\text{jslot}(J)-1)} \sqsubseteq J$.*
- (P2) *Each honest vertex v extends a maximum-weight chain in J_v .*
- (P3) *For any $v \in V$ and any $c \in \mathcal{C}(v)$, v lies on a maximum-weight chain in J_c ; and moreover, $\text{I}_{\#}(v) \geq \text{lastSlt}(c-1) - D$.*
- (P4) *Any $u, v \in V$ such that $\exists r: r \in \text{I}_c(u) \wedge r + 1 \in \text{I}_c(v)$ satisfy $v \in \text{desc}_F^*(u)$.*

The axioms again have an intuitive interpretation with respect to our protocol: (P1) requires that any justification—capturing the view of an honest block creator or an honest voter—must contain the whole public subtree at that time. (P2) captures that honest block creators extend a block that in their view (described by J_v) extends a maximum-weight chain;

(P3) postulates that any certified block must lie on a maximum-weight chain in some honest view at the time of voting (described by J_c), and must be ‘recent’ on this chain as enforced by the protocol; and finally (P4) guarantees that certificates coming from consecutive rounds “extend one another”, i.e., lie on a single chain.

In the rest of the paper, we will only be considering protocol-respecting trees (and often referring to them as trees); the reason we defined this notion separately is to take advantage of Definitions 3–9.

► **Definition 11** (Dominant chains). *Let T be a chain in a tree F . We call T dominant in F if $\text{wt}_F(T) \geq \text{wt}(\overline{F})$.*

► **Definition 12** (Branches). *For an integer $\ell \geq 1$ and for two chains T and T' of a tree F , we write $T \sim_\ell T'$ if the two chains share a vertex with a $l_\#$ -label greater than or equal to ℓ . The set of all chains $T' \in F$ such that $T \sim_\ell T'$ is called the branch of T in F and denoted $\mathcal{B}_F(T; \ell)$; when ℓ can be inferred from context, we write $\mathcal{B}_F(T)$.*

Intuitively, $T \sim_\ell T'$ guarantees that the respective blockchains agree on the state of the ledger up to time slot ℓ . Looking ahead, the adversary can make two honest parties disagree on the state of the ledger up to time ℓ only if she makes them hold two chains $T \not\sim_\ell T'$.

4.3 Analytic Quantities: Reach (ρ) and Margin (μ_ℓ)

► **Definition 13** (Advantage, reach, margin). *For a tree $F \vdash (w, \sigma)$, we define the advantage of a chain $T \in F$ as*

$$\alpha_F(T) = \text{wt}_F(T) - \text{wt}(\overline{F}) ;$$

in particular, a chain T is dominant in F if and only if $\alpha_F(T) \geq 0$. We then define

$$\rho(F) := \max_{T \text{ in } F} \alpha_F(T) \quad \text{and} \quad \rho(w, \sigma) := \max_{F \vdash (w, \sigma)} \rho(F) ,$$

and in both cases we refer to the quantity $\rho(\cdot)$ as reach (of F and the pair (w, σ) , respectively). For a given pair (w, σ) , we sometimes refer to a tree F and a chain T maximizing the above expressions as a witness tree and a witness chain, respectively; note that these are not necessarily unique.

Finally, we define the margin of F , denoted $\mu_\ell(F)$, to be the “penultimate” advantage taken over chains T_1, T_2 of F such that $T_1 \not\sim_\ell T_2$:

$$\mu_\ell(F) := \max_{T_1 \not\sim_\ell T_2} \left(\min\{\alpha_F(T_1), \alpha_F(T_2)\} \right) .$$

There might exist multiple such pairs in F , but under the condition $\ell \geq 1$ there will always exist at least one such pair, as the trivial chain T_0 containing only the root vertex satisfies $T_0 \not\sim_\ell T$ for any T and $\ell \geq 1$, in particular $T_0 \not\sim_\ell T_0$. For this reason, we will always consider $\mu_\ell(\cdot)$ only for $\ell \geq 1$. We again overload the notation by defining

$$\mu_\ell(w, \sigma) := \max_{F \vdash (w, \sigma)} \mu_\ell(F) .$$

We use the terms witness tree and witness chains analogously also in the case of margin, it will be always clear from the context whether we are referring to witnesses with respect to reach or margin.

In the analysis we make use of the *honest depth* quantity introduced in [12]. Intuitively, the honest depth $h_\Delta(x)$ of a string x captures the minimum growth of honest blockchains over a period of slots corresponding to x , in the absence of any certificates. More concretely, it is the minimum number of times during x that an honest slot leader must create a block at a higher depth because it is guaranteed to “see” an honest blockchain at one depth lower than was created at least Δ slots earlier.

► **Definition 14** (Honest depth h_Δ). *For $x \in \{0,1\}^*$, we define $h_\Delta(x)$ inductively so that $h_\Delta(\epsilon) = 0$, $h_\Delta(x0) = h_\Delta(x)$, and $h_\Delta(x1) = h_\Delta(x\lceil\Delta) + 1$. We in fact overload h_Δ to apply to strings from $\Sigma^* = (\mathbb{N} \times \mathbb{N})^*$, in which case symbols with non-zero first coordinate (i.e., from $((\mathbb{N} \setminus \{0\}) \times \mathbb{N})^*$ are counted as 1s, while symbols from $(\{0\} \times \mathbb{N})^*$ are treated as 0s.*

4.4 Margin and Consistency

Intuitively, there is a natural connection between margin and settlement, which was formally established for longest-chain protocols (for the appropriate definition of margin) in [15, 11]; we extend it to our setting with certificates below. This motivates our effort to upper-bound μ_ℓ . (Cf. Section 2 for a definition of $\text{prune}(\cdot)$ and ConsFail .)

► **Lemma 15** (Margin and consistency). *Consider an execution (w, σ) with $w = w_1 \dots w_N$ and $\sigma = \sigma_1 \dots \sigma_{\text{rnd}(N)}$. Let B be a block produced in slot $\ell \in [N]$, and let $t_0 > \ell$ be such that B is contained in some chain held by an honest party at time t_0 . If for every $t \in \{t_0, \dots, N\}$ we have $\mu_\ell((w, \sigma)_{t\lceil}) < -B$ then B is contained in every chain C held by any honest party at any time $t \in \{t_0, \dots, N\}$.*

As a consequence, let $t^ > \ell$ be the earliest time such that B is contained in $\text{prune}(C)$ for some chain C held by an honest party P at time t^* (i.e., P considers B settled at time t^*). If for every $t \in \{t^*, \dots, N\}$ we have $\mu_\ell((w, \sigma)_{t\lceil}) < -B$ then B will not induce the event ConsFail during the execution.*

Proof. Let $F \vdash (w, \sigma)$ be the tree corresponding to the execution, and let T be a chain in $F_{t_0\lceil}$ that contains B and is dominant in $F_{t_0\lceil}$: such T exists by assumption, as $F_{t_0\lceil}$ describes the execution up to time t_0 and honest parties only hold chains that are dominant.

The proof proceed by induction on $t \in [t_0, N]$. For the base case, we first prove that at time t_0 , no honest party is holding a chain that does not contain B . Assume the opposite, namely that an honest party is holding a chain T' at time t_0 and T' does not contain B . The fact that T' is held by an honest party implies that T' is dominant in $F_{t_0\lceil}$ and hence $\alpha_{F_{t_0\lceil}}(T') \geq 0$. However, we also have $\alpha_{F_{t_0\lceil}}(T) \geq 0$ for the same reason, and moreover, since T' does not contain B , we have $T \not\sim_\ell T'$ by definition of $\not\sim_\ell$. This implies $\mu_\ell((w, \sigma)_{t_0\lceil}) \geq \mu_\ell(F_{t_0\lceil}) \geq 0$, contradicting the assumption of the lemma.

For the inductive step, assume that for some $t \in [t_0, N-1]$ all dominant chains in $F_{t\lceil}$ contain B , and our goal is to prove the same is true for $t+1$. We consider two cases. First, assume that $\text{wt}(\overline{F_{t\lceil}}) = \text{wt}(\overline{F_{t+1\lceil}})$. Then any dominant chain in $F_{t\lceil}$ is also dominant in $F_{t+1\lceil}$, and contains B . Therefore, there exist dominant chains in $F_{t+1\lceil}$ that contain B , and as above, the existence of a dominant chain not containing B would contradict the assumption that $\mu_\ell((w, \sigma)_{t+1\lceil})$ is negative. It remains to consider the case $\text{wt}(\overline{F_{t+1\lceil}}) \geq \text{wt}(\overline{F_{t\lceil}}) + 1$, we argue that $F_{t+1\lceil}$ again cannot contain dominant chains that do not contain B . Towards a contradiction, let T^* be such a chain, and let $T_{t\lceil}^*$ be its restriction to $F_{t\lceil}$. Note that the weight of T^* could grow by at most $B+1$ in slot $t+1$ (compared to $T_{t\lceil}^*$), by obtaining at

most one certificate and one block. Therefore, and since T is dominant in F_{t+1} , we have

$$\begin{aligned}\mu_\ell((w, \sigma)_{t+1}) &\geq \mu_\ell(F_{t+1}) \geq \alpha_{F_{t+1}}(T_{t+1}) = \text{wt}(T_{t+1}) - \text{wt}(\overline{F_{t+1}}) \\ &\geq (\text{wt}_{F_{t+1}}(T) - B - 1) - (\text{wt}(\overline{F_{t+1}}) - 1) = \alpha_{F_{t+1}}(T) - B \geq -B,\end{aligned}$$

contradicting the assumption of the lemma as desired. \blacktriangleleft

Given the above connection between margin and consistency, in Sections 4.5–4.7 we state and prove recurrences describing the evolution of margin (and the dependent quantity reach) during the protocol’s execution.

4.5 Reach and Margin Recurrences during 1-Rounds

We start by studying the behavior of reach and margin during a period in the execution of the protocol that takes the optimistic path. Namely, we look at a sequence of rounds that lead to a successful and timely creation of certificates, as represented by a sequence of symbols ‘1’ in the voting string.

► **Theorem 16** (Reach and margin during 1-rounds). *Fix $\ell \geq 1$. Let (w, σ) and $(wx, \sigma 1^r)$ be two executions such that x exactly spans $r \cdot U$ slots corresponding to $r \geq 1$ voting rounds. We have $\rho(\varepsilon, \varepsilon) = 0$ and*

$$\rho(wx, \sigma 1^r) \leq \max \{ \rho(w, \sigma) - r \cdot B + \#_{[\text{ha}]}(x), \#_{[\text{a}]}(x) + D + \Delta \}.$$

Moreover, $\mu_\ell(wx, \sigma 1^r) \leq \rho(wx, \sigma 1^r)$, and if $\ell < |w| - D$ then

$$\mu_\ell(wx, \sigma 1^r) \leq \rho(w, \sigma) - r \cdot B + \#_{[\text{ha}]}(x).$$

4.5.1 Bounding Reach

We first establish a helper lemma that, informally speaking, lower-bounds the growth of the weight of the public subtree during 1-rounds.

► **Lemma 17** (Public tree growth). *Let (w, σ) and $(wx, \sigma 1^r)$ be two executions such that x spans $r \cdot U$ slots exactly corresponding to $r \geq 1$ voting rounds. Let $F' \vdash (wx, \sigma 1^r)$ be a protocol-respecting tree and let $F \sqsubseteq F'$ be a restriction of F' to (w, σ) . Then we have*

$$\text{wt}(\overline{F'}) \geq \text{wt}(\overline{F}) + r \cdot B.$$

Proof. For each $i \in \{0, 1, \dots, r\}$ let F_i denote the restriction of F' to $\text{lastSlt}(|\sigma| + i)$. Notice that we have $F_0 = F$ and $F_r = F'$. Moreover, for each $i \in [r]$, let v_i denote the vertex in F_{i-1} that becomes certified in round $|\sigma| + i$, and let J_i denote the corresponding justification, so we have $\text{jslot}(J_i) = \text{lastSlt}(|\sigma| + i - 1) + 1$ and $\overline{F_{i-1}} \sqsubseteq J_i \sqsubseteq F_{i-1}$. Let T_i be the maximum-weight chain in J_i that contains v_i , as guaranteed by (P3).

First, notice that for each $i \in [r - 1]$ we have

$$\text{wt}_{J_i}(T_i) \stackrel{(a)}{\leq} \text{wt}_{J_{i+1}}(T_i) - B \stackrel{(b)}{\leq} \text{wt}_{J_{i+1}}(T_{i+1}) - B. \quad (1)$$

To justify inequality (a), note that both T_i and the certificate on v_i appear in $\overline{F_i}$, as they were known to some honest party at the time the certificate was created and hence publicly known $\Delta < U$ slots later; formally, both the justification J_i and the certificate $|\sigma| + i \in \mathcal{C}(F_i)$ are propagated in F_i . Therefore, they also appear in J_{i+1} , and $\text{wt}_{J_{i+1}}(T_i)$ is at least $\text{wt}_{J_i}(T_i)$

increased by the additional boost B provided by the newly added certificate. Inequality (b) then follows since T_{i+1} is maximum-weight in J_{i+1} and hence it is at least as heavy as any chain in $\overline{F_{i+1}}$, and as argued above, T_i appears in $\overline{F_{i+1}}$.

To conclude the argument, we now have

$$\text{wt}(\overline{F_0}) \stackrel{(c)}{\leq} \text{wt}_{J_1}(T_1) \stackrel{(d)}{\leq} \text{wt}_{J_r}(T_r) - (r-1) \cdot B \stackrel{(e)}{\leq} \text{wt}(\overline{F_r}) - r \cdot B. \quad (2)$$

Here, inequality (c) holds since $\overline{F_0} \sqsubseteq J_1$ and T_1 is maximum-weight in J_1 . Inequality (d) is an $(r-1)$ -fold application of (1). Finally, inequality (e) again holds as T_r appears in $\overline{F_r}$, and its weight has been increased since J_r by the final newly added certificate. Put together, (2) establishes the lemma. \blacktriangleleft

We now employ Lemma 17 to establish an upper bound for reach during a period of 1-rounds.

► **Lemma 18** (Reach upper bound). *Let (w, σ) and $(wx, \sigma\tau)$ be two executions such that x and τ span $r \cdot U$ slots exactly corresponding to $r \geq 1$ voting rounds. If $\tau = 1^r$ then*

$$\rho(wx, \sigma\tau) \leq \max \{ \rho(w, \sigma) - rB + \#_{[\text{ha}]}(x), \#_{[\text{a}]}(x) + D + \Delta \}.$$

Proof. Let $F' \vdash (wx, \sigma\tau)$ be a witness tree for $\rho(\cdot)$ and let T' be a witness chain in F' , i.e.,

$$\rho(wx, \sigma\tau) = \alpha_{F'}(T') = \text{wt}_{F'}(T') - \text{wt}(\overline{F'}).$$

Let $F \sqsubseteq F'$ be a restriction of F' to (w, σ) , let T be a restriction of T' to F .

We now consider two separate cases, depending on whether T' contains any vertices that were certified in rounds corresponding to τ , i.e., whether

$$\exists v \in T' : \text{I}_c(v) \cap \{|\sigma| + 1, \dots, |\sigma\tau|\} \neq \emptyset. \quad (3)$$

Let us first consider the case that (3) is satisfied in F' . Let $i \in [r]$ be the largest index such that the certificate from round $|\sigma| + i$ certifies a block on T' . We have $\tau_i = 1$ and $\text{lastSlt}(|\sigma| + i) \leq |wx|$, hence the certificate, and the block it certifies, appear in $\overline{F'}$ by axiom (C3) and the definition of a public subtree. This in turn implies

$$\alpha_{F'}(T') \leq \#_{[\text{a}]}(x) + D + \Delta,$$

as T' may, on top of the deepest certified block on it (which appears in $\overline{F'}$), only contain

- at most D vertices from slots corresponding to the last round of σ (due to (P3));
- at most $\#_{[\text{a}]}(x)$ adversarial vertices from slots corresponding to x ; and
- at most Δ honest vertices from x that do not appear in $\overline{F'}$.

This concludes the proof of the first case.

Now consider the case where (3) is not satisfied in F' , i.e., there is no certificate associated with a round described by τ and certifying any of the vertices on T' . Based on that, we have

$$\text{wt}_{F'}(T') \leq \text{wt}_F(T) + \#_{[\text{ha}]}(x), \quad (4)$$

as the weight of T' grows on top of the weight of T only due to any additional vertices in $T' \setminus T$. On the other hand, we can lower-bound $\text{wt}(\overline{F'}) - \text{wt}(\overline{F})$ using Lemma 17, getting

$$\text{wt}(\overline{F'}) \geq \text{wt}(\overline{F}) + rB. \quad (5)$$

Inequalities (4) and (5) then together imply

$$\rho(wx, \sigma\tau) \leq \rho(w, \sigma) - rB + \#_{[\text{ha}]}(x),$$

concluding the proof for this case as well. \blacktriangleleft

4.5.2 Bounding Margin

Towards bounding the quantity $\mu_\ell(\cdot)$, first observe that its definition directly implies that $\mu_\ell(w, \sigma) \leq \rho(w, \sigma)$ for any execution (w, σ) . Moreover, for any (w, σ) with $|w| < \ell$, we actually have $\mu_\ell(w, \sigma) = \rho(w, \sigma)$ as, recalling the definition of $\mu_\ell(F)$ and the relation $\not\sim_\ell$, notice that any chain T with $l_\#(T) < \ell$ satisfies $T \not\sim_\ell T$, and hence the witness chains T_1, T_2 for $\mu_\ell(F)$ may satisfy $T_1 = T_2$.

We now proceed to prove an upper bound on μ_ℓ .

► **Lemma 19** (Margin upper bound). *Let (w, σ) and $(wx, \sigma 1^r)$ be two executions such that x spans $r \cdot U$ slots exactly corresponding to $r \geq 1$ voting rounds. Fix $\ell < |w| - D$. Then*

$$\mu_\ell(wx, \sigma 1^r) \leq \rho(w, \sigma) - rB + \#_{[\text{ha}]}(x).$$

Proof. Let $F' \vdash (wx, \sigma \tau)$ be a witness tree for $\mu_\ell(\cdot)$ and let $T'_1 \not\sim_\ell T'_2$ be a pair of witness chains in F' such that $\alpha_{F'}(T'_1) \geq 0$ and $\alpha_{F'}(T'_1) \geq \alpha_{F'}(T'_2) = \mu_\ell(wx, \sigma 1^r)$. Let $F \sqsubseteq F'$ be a restriction of F' to (w, σ) . Let T_1, T_2 be restrictions of T'_1, T'_2 to F , respectively. Observe that Lemma 17 gives us $\text{wt}(\overline{F'}) \geq \text{wt}(\overline{F}) + rB$.

Let $\mathcal{R} = \{|\sigma| + 1, \dots, \sigma + r\}$ denote the indices of the final r 1-rounds in $(wx, \sigma 1^r)$. By axiom (P4) we know that all certificates corresponding to rounds in \mathcal{R} appear on the same chain, and by axiom (P3), each of them certifies a block belonging to a slot from round $|w| - D$ or later. Hence $T'_1 \not\sim_\ell T'_2$ together with the assumption $\ell < |w| - D$ implies that at least one of the chains T'_1, T'_2 contains no vertices certified in these rounds. We now consider these two cases separately.

If T'_2 contains no certificates from rounds in \mathcal{R} then we immediately have

$$\text{wt}_{F'}(T'_2) \leq \text{wt}(F) + \#_{[\text{ha}]}(x), \quad (6)$$

as the weight of T_2 only grows during the rounds in \mathcal{R} by added vertices, and there are at most $\#_{[\text{ha}]}(x)$ of them. Combining Lemma 17, (6), and the fact that $\rho(w, \sigma) \geq \rho(F) = \text{wt}(F) - \text{wt}(\overline{F})$ for any blocktree $F \vdash (w, \sigma)$, we get

$$\begin{aligned} \mu_\ell(wx, \sigma 1^r) &= \alpha_{F'}(T'_2) = \text{wt}_{F'}(T'_2) - \text{wt}(\overline{F'}) \\ &\leq (\text{wt}(F) + \#_{[\text{ha}]}(x)) - (\text{wt}(\overline{F}) + rB) \\ &\leq \rho(w, \sigma) - rB + \#_{[\text{ha}]}(x), \end{aligned}$$

concluding the proof for this case.

On the other hand, if T'_1 contains no certificates from rounds in \mathcal{R} then

$$\begin{aligned} \text{wt}_{F'}(T'_1) &\leq \text{wt}(F) + \#_{[\text{ha}]}(x) \leq \text{wt}(\overline{F}) + \rho(F) + \#_{[\text{ha}]}(x) \\ &\leq \text{wt}(\overline{F}) + \rho(w, \sigma) + \#_{[\text{ha}]}(x) \end{aligned} \quad (7)$$

and, again using Lemma 17,

$$\text{wt}_{F'}(T'_2) = \mu_\ell(F') + \text{wt}(\overline{F'}) \geq \mu_\ell(F') + \text{wt}(\overline{F}) + rB = \mu_\ell(wx, \sigma 1^r) + \text{wt}(\overline{F}) + rB. \quad (8)$$

Combining (7) and (8) and considering that by choice of T'_1, T'_2 we have $\text{wt}_{F'}(T'_1) \geq \text{wt}_{F'}(T'_2)$ concludes the proof also for the second case. ◀

4.6 Reach and Margin Recurrences during 0-Rounds

We now turn our attention towards rounds that do not lead to timely certificates, and are represented by '0'-symbols in the voting string. This corresponds to the cooldown periods, and intuitively, in these periods reach and margin behave analogously to an execution of a plain longest-chain PoS protocol without any certificates. This behavior has already been studied in previous work [12] on which our analysis for this case relies. We will use the following terminology from [12, 13].

► **Definition 20** (Terminal leader strings; phases). *Let $\Sigma_A = (\{0\} \times \mathbb{N}) \subset \Sigma$. A leader string w is called terminal if it is either the empty string or it terminates with a Δ -period with no honest successes, i.e., if $w \in \{\varepsilon\} \cup (\Sigma^* \circ \Sigma_A^\Delta)$, where \circ denotes language concatenation. A non-empty terminal leader string ϕ is called a phase if it ends with the first string from Σ_A^Δ it contains. Formally, $\phi = \phi_1 \dots \phi_n \in \Sigma^n$ with $n \geq \Delta$ is a phase if $(\phi_{i-\Delta+1} \dots \phi_i \in \Sigma_A^\Delta) \Rightarrow i = n$.*

We remark that any characteristic string $w \in \Sigma^n$ has a unique decomposition into phases in that sense that w can be written $\phi^{(1)} \dots \phi^{(s)} \psi$, where each $\phi^{(i)}$ is a phase and ψ is a string that does not contain a sequence from Σ_A^Δ . We call ψ an “incomplete phase” and note that ψ may be empty, in which case the string w is terminal.

Moreover, recall that the length of an execution in slots does not need to be an integer multiple of U .

► **Theorem 21** (Reach and margin during 0-rounds). *Fix $\ell \geq 1$. Let (w, σ) be an execution and (wx, σ') be its extension such that all slots covered by x correspond to 0-rounds in σ' , i.e., if we write $\sigma' =: \sigma'_1 \dots \sigma'_{|\sigma'|} \in \{0, ?, 1\}^{|\sigma'|}$ then $\forall i \in \{|w| + 1, \dots, |wx|\}: \sigma'_{\text{rnd}(i)} = 0$. We have*

$$\mu_\ell(wx, \sigma') \leq \rho(wx, \sigma') \leq \rho(w, \sigma) + \#_{[\text{ha}]}(x). \quad (9)$$

Moreover, if w is terminal and $x =: \phi$ is a phase, we have

$$\rho(w\phi, \sigma') \leq \max \{ \rho(w, \sigma) + \#_{[\text{a}]}(\phi) - h_\Delta(\phi), \#_{[\text{a}]}(\phi) \}$$

and if additionally $\mu_\ell(w, \sigma) < -\#_{[\text{a}]}(\phi)$, we also have

$$\mu_\ell(w\phi, \sigma') \leq \mu_\ell(w, \sigma) + \#_{[\text{a}]}(\phi) - h_\Delta(\phi).$$

Finally, if w is terminal, $\phi = (1, 0)(0, 0)^\Delta$, and $\rho(w, \sigma) = \mu_\ell(w, \sigma) = 0$ then $\mu_\ell(w\phi, \sigma') \leq -1$.

Proof. The first inequality in (9) follows directly from the definitions. For the second inequality, let $F' \vdash (wx, \sigma')$ be a witness tree for $\rho(\cdot)$ and let T' be a (reach) witness chain in F' , i.e., $\rho(wx, \sigma') = \alpha_{F'}(T') = \text{wt}_{F'}(T') - \text{wt}(\overline{F'})$. Let $F \sqsubseteq F'$ be a restriction of F' to (w, σ) ; let T be a restriction of T' to F . We have $\text{wt}_{F'}(T') \leq \text{wt}_F(T) + \#_{[\text{ha}]}(x)$ as T' might grow—compared to T —by at most $\#_{[\text{ha}]}(x)$ vertices, and it contains no additional certificates compared to T . On the other hand, it follows directly from the definition of a public subtree that $\text{wt}(\overline{F'}) \geq \text{wt}(\overline{F})$. Combining these two observations, we get

$$\begin{aligned} \rho(wx, \sigma') &= \text{wt}_{F'}(T') - \text{wt}(\overline{F'}) \leq (\text{wt}_F(T) + \#_{[\text{ha}]}(x)) - \text{wt}(\overline{F}) \leq \rho(F) + \#_{[\text{ha}]}(x) \\ &\leq \rho(w, \sigma) + \#_{[\text{ha}]}(x) \end{aligned}$$

as desired.

The remaining claims of the theorem are direct reformulations of Theorem 2 from [12] to our setting. Indeed, [12, Theorem 2] describes the behavior of reach and margin in

the PoS setting without the presence of certificates, which is exactly the setting that occurs in our analysis during 0-rounds. To see the connection, notice that our blocktree axioms (T1), (T2), (C1) and (P2) correspond to blocktree axioms (A1), (S3), (S4) and (A2) in [12], respectively; while our axioms (T3), (C2), (C3), (P3) and (P4) govern the behavior of certificates and have no counterparts in [12]. Furthermore, an inspection of the definitions of reach and margin shows that in the absence of certificates, both notions coincide with their counterparts in [12], justifying the translation of their results to our 0-rounds. \blacktriangleleft

4.7 Reach and Margin Recurrences during ?-Rounds

Finally, we study the effect of ?-rounds. Intuitively, these rounds are detrimental to the evolution of reach and margin, but the following theorem upper-bounds the loss from a ?-round by the term $B + U$, and as we will see later, this is sufficient for our analysis as ?-rounds are sufficiently rare.

► **Theorem 22** (Reach and margin during ?-rounds). *Fix $\ell \geq 1$. Let (w, σ) and $(wx, \sigma?)$ be two executions such that x exactly spans U slots corresponding to a single ?-round. Then*

$$\rho(wx, \sigma?) \leq \rho(w, \sigma) + B + U \quad \text{and} \quad \mu_\ell(wx, \sigma?) \leq \mu_\ell(w, \sigma) + B + U.$$

Proof. *Reach.* Let $F' \vdash (wx, \sigma?)$ be a witness tree for $\rho(\cdot)$ and let T' be a (reach) witness chain in F' , i.e., $\rho(wx, \sigma?) = \alpha_{F'}(T') = \text{wt}_{F'}(T') - \text{wt}(\bar{F}')$. Let $F \sqsubseteq F'$ be a restriction of F' to (w, σ) ; let T be a restriction of T' to F . We have

$$\text{wt}_{F'}(T') \leq \text{wt}_F(T) + B + U$$

as T' might grow—compared to T —by at most U vertices, and also contain at most one additional certificate (from the final ?-round), contributing with weights at most U and B , respectively. On the other hand, it follows directly from the definition of a public subtree that $\text{wt}(\bar{F}') \geq \text{wt}(\bar{F})$. Combining these two observations, we get

$$\begin{aligned} \rho(wx, \sigma?) &= \text{wt}_{F'}(T') - \text{wt}(\bar{F}') \leq (\text{wt}_F(T) + B + U) - \text{wt}(\bar{F}) \leq \rho(w, \sigma) + B + U \\ &\leq \rho(w, \sigma) + B + U \end{aligned}$$

as desired.

Margin. Let now $F' \vdash (wx, \sigma?)$ denote a witness tree for $\mu_\ell(\cdot)$ and let $T'_1 \not\sim_\ell T'_2$ be a pair of witness chains in F' such that $\alpha_{F'}(T'_1) \geq 0$ and $\alpha_{F'}(T'_1) \geq \alpha_{F'}(T'_2) = \mu_\ell(wx, \sigma?)$. Let $F \sqsubseteq F'$ be a restriction of F' to (w, σ) . Let T_1 and T_2 be restrictions of T'_1 and T'_2 to F , respectively; notice that $T_1 \not\sim_\ell T_2$. By the same argument as in the case of reach above, any chain T' in F' satisfies $\text{wt}_{F'}(T') \leq \text{wt}_F(T) + B + U$, where T is the restriction of T' to F . We also have $\text{wt}(\bar{F}') \geq \text{wt}(\bar{F})$. Therefore

$$\begin{aligned} \mu_\ell(w, \sigma) &\geq \mu_\ell(F) = \max_{\substack{T_a, T_b \text{ chains in } F \\ T_a \not\sim_\ell T_b}} \left(\min\{\text{wt}_F(T_a), \text{wt}_F(T_b)\} \right) - \text{wt}(\bar{F}) \\ &\geq \min\{\text{wt}_F(T_1), \text{wt}_F(T_2)\} - \text{wt}(\bar{F}) \\ &\geq (\text{wt}_{F'}(T'_2) - U - B) - \text{wt}(\bar{F}') = \mu_\ell(wx, \sigma?) - U - B \end{aligned}$$

as desired. \blacktriangleleft

4.8 Good Leader Strings

Having established recurrences for reach and margin given a particular execution (w, σ) , the next step in the proof is to establish that the voting string σ always has a certain format; this is the purpose of Section 4.9. In preparation, this section introduces the notion of *good leader strings* w , which necessitates defining two notions that have close correspondence with reach and margin (cf. Section 4.3).

Recall that *reach* is a quantity that intuitively captures weight stemming from blocks and certificates unknown to honest parties, and that *margin relative to some slot ℓ* corresponds to the maximum weight difference between two dominant chains that at slot ℓ or before.

In the following, let $\Phi = (\phi^{(1)}, \dots, \phi^{(k)})$ be a sequence of phases in Σ^* .⁴

4.8.1 Reach-Like Quantity

Consider a quantity $R[\Phi; z]$ defined as follows, where $z > 0$ is an initial value and $R[\Phi; z]$ corresponds to the reach after processing Φ in a setting without certificates:

$$R[\Phi; z] := \begin{cases} z & \text{if } k = 0 \\ \max(R[\Phi'; z]) + \#_{[a]}\phi^{(k)} - h_\Delta\phi^{(k)}, \#_{[a]}\phi^{(k)} & \text{otherwise,} \end{cases}$$

where $\Phi' = (\phi^{(1)}, \dots, \phi^{(k-1)})$. Observe the correspondence between the evolution of R and that of ρ during 0-rounds (cf. Section 4.6).

4.8.2 Margin-Like Quantity

In a similar vein, consider a quantity $M_\ell[\Phi; z]$ defined as follows, where $z > 0$ is an initial value and $M_\ell[\Phi; z]$ corresponds to the margin relative to ℓ after processing Φ in a setting without certificates. First, up to ℓ , M_ℓ is equal to R , i.e., if $|\Phi| \leq \ell$,

$$M[\Phi; z] := R[\Phi; z].$$

After ℓ , i.e., for $|\Phi'| \geq \ell - 1$ (for Φ' as above), M_ℓ behaves as follows: if $R[\Phi'; z] = M[\Phi'; z] = 0$ and $\phi^{(k)} = (1, 0)(0, 0)^\Delta$, then

$$M_\ell[\Phi; z] := -1;$$

otherwise,

$$M_\ell[\Phi; z] := \begin{cases} M_\ell[\Phi'; z] + \#_{[a]}\phi^{(k)} - h_\Delta\phi^{(k)} & \text{if } M_\ell[\Phi'; z] < -\#_{[a]}\phi^{(k)}, \\ R[\Phi; z] & \text{otherwise.} \end{cases}$$

Observe the correspondence between the evolution of M_ℓ and that of μ_ℓ during 0-rounds (cf. Section 4.6).

4.8.3 Leader-String Properties

Consider the following properties of a leader-string:

► **Definition 23** (Reach- and margin-like LS properties). *A leader string w has*

⁴ Consult Section 4.1 for notation related to lotteries, such as Σ , and Section 4.6 for the definition of a phase.

- $(T; \alpha, \beta)$ -reach if for every contiguous substring x of w of length at least T ,

$$R[\phi^{(1)} \dots \phi^{(t)}; \alpha + \#_{[\text{ha}]} \phi^{(0)}] + \#_{[\text{ha}]} \psi \leq \beta,$$

and

- $(T; \alpha, \beta)$ -(super-)margin if for every contiguous substring x of w of length at least T ,

$$M_\ell[\phi^{(1)} \dots \phi^{(t)}; \alpha + \#_{[\text{ha}]} \phi^{(0)}] + \#_{[\text{ha}]} \psi \leq \beta$$

(and if additionally “margin remains negative at all times”),

where $x = \phi^{(0)} \dots \phi^{(t)} \psi$ is the phase decomposition of x into phases where ψ is a (perhaps empty) incomplete phase with no quiet period.

► **Definition 24** (Chain-quality-like LS property for cooldown). A leader-string w has $(T_{\text{HCl}}, B, D, U)$ -cooldown-chain-quality if any substring

$$z = x_{\text{pre}} \| \underbrace{x_1 \| \dots \| x_t}_x \| \underbrace{y_{\text{pre}} \| y_{\text{hcl}} \| y_{\text{post}}}_y$$

of w satisfying

1. y_{hcl} is round-aligned (i.e., starting at round boundary),
2. $|y_{\text{hcl}}| = (T_{\text{HCl}} - 3) \cdot U$,
3. $|y_{\text{post}}| \geq 0$,
4. if $|y_{\text{pre}}| \leq 3U$, then $t = 0$, else $t \geq 0$, and
5. $|x_{\text{pre}}| \geq 0$,
6. $|x_i| = U$,

has the property that

$$\begin{aligned} h_\Delta(\tilde{x}_{\text{pre}}) + \sum_{i=1}^t h_\Delta(\tilde{x}_i) + h_\Delta(\tilde{y}) &> \#_{[\text{a}]}(x_{\text{pre}}) + \sum_{i=1}^t \#_{[\text{a}]}(x_i) + \#_{[\text{a}]}(y) + (B + D + U + \Delta) \\ &= \#_{[\text{a}]}(z) + (B + D + U + \Delta), \end{aligned} \tag{10}$$

where

- \tilde{y} (resp. \tilde{x}_{pre}) is y (resp. x_{pre}) with Δ symbols truncated on each side,
- \tilde{x}_i is x_i with 2Δ symbols truncated on the left and Δ on the right.

► **Definition 25** (Chain-quality-like LS property for happy periods). A leader-string w has (T_{HL}, D, U) -happy-chain-quality if any substring

$$z = x_{\text{pre}} \| \underbrace{x_1 \| \dots \| x_t}_x$$

of w satisfying

1. x_1 is round-aligned (i.e., starting at round boundary),
2. $0 \leq |x_{\text{pre}}| < U$,
3. $|x_i| = U$,
4. $t \geq \kappa_3$

has the property that

$$\begin{aligned} h_\Delta(\tilde{x}_{\text{pre}}) + \sum_{i=1}^t h_\Delta(\tilde{x}_i) &> \#_{[a]}(x_{\text{pre}}) + \sum_{i=1}^t \#_{[a]}(x_i) + (D + U + \Delta) \\ &= \#_{[a]}(z) + (D + U + \Delta), \end{aligned} \quad (11)$$

where

- \tilde{x}_{pre} is x_{pre} with Δ symbols truncated on each side,
- \tilde{x}_i is x_i with 2Δ symbols truncated on the left and Δ on the right.

4.8.4 Good Leader Strings

The following definition captures the exact requirements a leader string must satisfy for the protocol to be secure:

► **Definition 26** (Good leader strings). *A leader string w is called $(T_{\text{HCl}}, T_{\text{CS}}, T_{\text{HL}}, B, U, L, \kappa_1, \kappa_2)$ -good if it has*

- $(T_{\text{HCl}} \cdot U; \kappa_1 + B + U, \kappa_1)$ -reach;
- $(T_{\text{CS}} \cdot U; \kappa_1, -\kappa_2)$ -margin;
- $(T_{\text{CS}} \cdot U; -\kappa_2 + 2L + B + U, -\kappa_2)$ and $(T \cdot U; -\kappa_2 + 2L + B + U, -1)$ -super-margin for every $T \geq 1$;
- $(T_{\text{HCl}}, B, D, U)$ -cooldown-chain-quality;
- (T_{HL}, D, U) -happy-chain-quality.

Otherwise, w is called bad.

For simplicity, whenever the parameters are clear from the context, they are dropped, and we simply say *good leader string*.

The following lemma follows from [1].

► **Lemma 27.** *Let $w = w_1 \dots w_N \in \Sigma^N$ be a leader string. Then, the probability that w is bad is negligible in $T_{\text{HCl}}U$, $T_{\text{CS}}U$, and $T_{\text{HL}}U$.*

4.9 Voting String Analysis

The goal of this section is to prove that the voting string always obeys the rules provided in Theorem 28. Throughout the entire section, whenever there is mention of a good leader string, what is in fact meant is a $(T_{\text{HCl}}, T_{\text{CS}}, B, U, L, \kappa_1, \kappa_2)$ -good leader string, where κ_1 and κ_2 are two security parameters.

► **Theorem 28.** *Assume a good leader string is chosen. Then, the voting string is built according to the following rules (where λ is the empty string and \rightarrow stands for “can be followed by”):*

$$\begin{array}{llll} (HS-I) & \sigma = \lambda & \rightarrow & 1 \\ (HS-II) & \sigma = \dots 1 & \rightarrow & \{?, 1\} \\ (HS-III) & \sigma = \dots ? & \rightarrow & 0 \\ (HS-IV) & \sigma = \dots 1 ? 0^L & \rightarrow & 0 \quad \text{if } 1 \leq L < K - 1 \\ (HS-V) & \sigma = \dots 1 ? 0^L & \rightarrow & \{?, 1\} \quad \text{if } L \in \{K - 2, K - 1\} \\ (HS-VI) & \sigma = \dots 0 ? 0^L & \rightarrow & 0 \quad \text{if } 1 \leq L < K - 1 \\ (HS-VII) & \sigma = \dots 0 ? 0^L & \rightarrow & \{?, 1\} \quad \text{if } L = K - 1 \end{array}$$

A voting string $\sigma \in \{0, 1, ?\}^*$ is called *valid* if it satisfies the conditions imposed by Theorem 28. Note that a voting string can naturally be split into cycles $\sigma = c_1 c_2 \dots c_\ell$ such that

$$c_i = 1^t ? 0^L$$

for $t \geq 0$ (except for c_1 , where $t \geq 1$) and $L \in \{K-1, K-2\}$; note that c_ℓ may be a partial cycle. Further, each cycle c can be subdivided into periods as follows (where the partial cycle at the end may only have some of the periods):

- *happy period*: the (maximal) prefix of 1's in c ;
- *?-period*: the ?-round following the happy period together with the two subsequent 0-rounds;
- *healing/certificate-inclusion (HCI) period*: the sequence of T_{HCI} 0-rounds following a ?-period;
- *certificate-settlement (CS) period*: the sequence of T_{CS} 0-rounds following the HCI period;
- *leftover period*: the remaining 0-rounds in the cycle.

Note that the reason for assigning the first two 0-rounds after the ?-round to the ?-period is that honest parties can only conclusively determine that the protocol is in cooldown after not seeing a certificate during two complete rounds, which is required for them to submit the latest certificate they know to the chain (the CI in HCI). Therefore, it is convenient to define the HCI period as the period in which there must be an honest block, even though healing technically starts earlier.

4.9.1 Helper Lemmas

The proof of Theorem 28 is by induction. To facilitate this, one formalizes the helper lemmas below.

4.9.1.1 Cooldown Properties

The first lemma establishes properties of the cooldown portion of cycles (HCI and CS periods).

► **Lemma 29.** *Assume a good leader string is chosen and that the execution has yielded a valid voting string $\sigma \in \{0, 1, ?\}^M$ up to some round M . Let \mathcal{D}_M be the set of chains that are dominant at the end of round M .⁵ Then,*

1. *all chains in \mathcal{D}_M agree up to the end of the last HCI period that is followed by a complete CS period.*
2. *every chain in \mathcal{D}_M has at least one honest block in every complete HCI period, and*

Note that proof of the second part of Lemma 29 uses the first part.

Agreement on HCI periods. The proof of the first part proceeds by first tracking reach ρ from genesis, showing that it remains bounded throughout, and in particular below security parameter κ_1 after the last slot ℓ of the HCI period in question. Then, μ_ℓ , i.e., margin relative to ℓ is tracked, starting at κ_1 after slot ℓ , showing that it falls below $-\kappa_2$ by the end of the subsequent CS period and then that it remains negative until the end of round M ,

⁵ A chain is *dominant at time t* if it sufficiently heavy to be adopted by an honest party.

which yields the desired claim in conjunction with Lemma 15. For readability, the arguments of reach and margin are dropped in favor of simply thinking them as a function of time.

Observe that at genesis ρ is 0. This is followed by zero or more 1-rounds, after which, by virtue of Theorem 16 and the assumption that $B \geq U$, ρ is bounded by $U + 2L + \Delta \leq \kappa_1$ (the last inequality by assumption again). Similarly, by Theorem 22, ρ is bounded by $\kappa_1 + B + U$ after the subsequent ?-round.

The goal is now to apply the good-leader-string (GLS) property to argue that ρ is bounded by κ_1 either (a) after the final round before the subsequent restart or (b) after the final round of the subsequent HCI period if that period is already the HCI period in question.

- (a) In this case, let x be the leader string corresponding to the entire period of 0-rounds. Decompose it into $x = \phi^{(0)} \dots \phi^{(k)} \psi$ be the decomposition of x into phases where ψ is a (perhaps empty) incomplete phase with no quiet period. Note that reach is at most $\kappa_1 + B + U + \#\text{[ha]}\phi^{(0)}$ after phase $\phi^{(0)}$. Thus, by the GLS property and the fact that $|x| \geq U \cdot T_{\text{HCI}}$, reach is at most $\kappa_1 - \#\text{[ha]}\psi$ after $\phi^{(k)}$ and at most κ_1 after the entire period of 0-rounds.
- (b) A similar argument, but taking as x only the leader string up to the end of that last round of the HCI in question.

In case (a), observe that after the zero or more 1-rounds following the cooldown, ρ remains below κ_1 , again using Theorem 16 as well as $B \geq U$ and $U + 2L + \Delta \leq \kappa_1$. The tracking now continues as above until the HCI period in question.

One now needs to track μ_ℓ , starting at ℓ , where it is bounded by reach, i.e., at that point, $\mu_\ell \leq \rho \leq \kappa_1$. Analogously to case (a) above, one considers leader string portion corresponding to the remaining cooldown, i.e., to the at least T_{CS} 0-rounds following the HCI period in question, and argues that, based on the GLS property, μ_ℓ drops to below $-\kappa_2$.

It remains to show that μ_ℓ remains negative until round M . After the zero or more 1-rounds that follow, $\mu_\ell \leq -\kappa_2 + 2L$, using Theorem 16 and $B \geq U$. After the subsequent ?-round, $\mu_\ell \leq -\kappa_2 + 2L + B + U$. It is also clear that during these rounds μ_ℓ cannot become non-negative.

If M has not been reached yet, consider again two cases (a) and (b), depending on whether round M lies beyond the next cooldown or not, respectively.

- (a) In the above fashion and using the first super-margin GLS property, argue that $\mu_\ell \leq -\kappa_2$ by the end of the cooldown and continue tracking margin in this fashion.
- (b) In the above fashion and using the second super-margin GLS property, argue that $\mu_\ell \leq -1$ by the end of round M .

This concludes the proof of the first part of Lemma 29.

Honest blocks in HCI periods. The proof of the second part of Lemma 29 proceeds by induction on the number of cycles, using the first part of the lemma to argue settlement of the purported honest block in each HCI period by the end of the subsequent CS period.

Consider the first cycle c_1 and a slot s anywhere in c_1 but after the HCI period. Assume, towards a contradiction, that there is a chain C dominant in slot s without any honest blocks with labels from the HCI period in c_1 . Let s_{left} be the slot number of the last honest block B^* before the HCI period; note that B^* may be the genesis block. Further, let s_{right} be the first slot after the HCI period for which $C[: s_{\text{right}}]$ is viable; this happens no later than at slot s . Observe that there are no honest blocks in the interval $(s_{\text{left}}, s_{\text{right}})$ on C .

One now (I) lower bounds the minimum honest weight (MHW)—the minimum weight among all honestly held chains—at slot s_{right} and (II) argues that C cannot reach this MHW

by slot s_{right} (based on the assumption that a good leader string was chosen). In the following, let $w - 1$ be the weight of C in slot $s_{\text{left}} - 1$ —as seen by the honest party P^* who created B^* .

Let r_{left} be the round that contains $s_{\text{left}} + \Delta$. Consider the following two cases:

- (A) r_{left} is a 1-round;
- (B) r_{left} is a ?-round or a 0-round.

In case (A), let $r_{\text{left}} + 1, \dots, r_{\text{left}} + t$ be the $t \geq 0$ 1-rounds following r_{left} and let x_1, \dots, x_t be the leader string for those portions. Further, let y_{pre} , y_{hci} , and y_{post} denote the leader-string during the subsequent ?-period, HCI period, and the slots between the end of the HCI period and s_{right} . Note that

$$z := \underbrace{x_1 \parallel \dots \parallel x_t}_{x} \parallel \underbrace{y_{\text{pre}} \parallel y_{\text{hci}} \parallel y_{\text{post}}}_{y}$$

satisfies the five conditions of Definition 24.

Towards (I), the first step is to show:

► **Proposition 30.** *The MHW is at least $w - C + B$ at the end of round r_{left} .*

Proof. Consider first the case where s_{left} is later than 2Δ after the beginning of r_{left} . In this case, $w - 1$ includes the weight of the certificate from r_{left} , as it is known to all honest parties 2Δ into r_{left} .

In the other case, note that it suffices to show that the MHW at the beginning of r_{left} is at least $w - C$ as then the fact that r_{left} is a 1-round implies that the MHW grows to at least $w + B$ by the end of r_{left} .

If the certificate from r_{left} ends up on C , then C has weight $w + B \geq w - C + B$ by the end of r_{left} . Otherwise, let $i \geq 1$ be such that the certificate from $r_{\text{left}} - i$ is the last certificate on C (this may go all the way back to the genesis certificate). Let C' be a chain that is dominant at the beginning of r_{left} and w' its weight; note that the MHW at that point is thus at least w' . It remains to show that $w' \geq w - C$.

Let w'' be the weight of the chain ending at the block B'' certified in round $r_{\text{left}} - i$ and observe that

- $w' \geq w'' + iB$ as C' contains all the certificates from rounds $r_{\text{left}} - (i - 1), \dots, r_{\text{left}}$, and
- $w - w'' \leq C + iU$ as this is the maximum number of blocks that C could gain between B'' and B^* .

Using that $B \geq U$, the above inequalities imply that $w' \geq w - C$. ◀

After the $t \geq 0$ 1-rounds $r_{\text{left}} + 1, \dots, r_{\text{left}} + t$, the MHW is at least

$$w - C + tB + \sum_{i=1}^t h_{\Delta}(\tilde{x}_i),$$

where \tilde{x}_i is x_i with 2Δ symbols truncated on the left and Δ on the right. This is the case because if the MHW is w' at the beginning of a 1-round, then after the first 2Δ slots, it grows to $w' + B$ due to the fact that the boosted block lies on a chain that is dominant at the beginning of the round, and by virtue of 1-rounds, the first honest party sees the certificate during the initial Δ rounds. Due to the \tilde{x}_i -portion of the round, the MHW grows by at least $h_{\Delta}(\tilde{x}_i)$ by the end of the round.

The MHW increase during the ?-period, the subsequent HCI period, and the remaining slots until slot s is always at least $h_{\Delta}(\tilde{y})$, where \tilde{y} is y with Δ slots truncated on each side.

This follows from the fact that the potential release of the certificate from the $?$ -round can only improve the MHW.

Towards (II), first, observe that between slot s_{left} and the end of r_{left} , chain C may gain (on top of w) at most weight $\Delta + U$ in blocks; further, it may gain additional weight B from the certificate in r_{left} . During the $t \geq 0$ 1-rounds $r_{\text{left}} + 1, \dots, r_{\text{left}} + t$, C may gain additional weight at most

$$tB + \sum_{i=1}^t \#_{[a]}(x_i).$$

Finally, during the $?$ -period, the subsequent HCI period, and the remaining slots until slot s , C gains at most $B + \#_{[a]}(y)$ additional weight.

Therefore, in order to be dominant in slot s_{right} , it is necessary that

$$\sum_{i=1}^t \#_{[a]}(x_i) + \#_{[a]}(y) + (B + C + U + \Delta) \geq \sum_{i=1}^t h_{\Delta}(\tilde{x}_i) + h_{\Delta}(\tilde{y}),$$

which contradicts GLS condition (10) (cf. Definition 24).

In case (B), let y_{pre} be the portion of the leader string from slot $\max(s_{\text{left}}, s')$, where s' is the first round of r_{left} , to the last slot just before the HCI period, y_{hci} the leader string during the HCI period, and y_{post} the leader string after the HCI period until slot s . Note that

$$z := \underbrace{y_{\text{pre}} \| y_{\text{hci}} \| y_{\text{post}}}_y$$

satisfies the five conditions of Definition 24.

Towards (I), the MHW by s_{right} is at least $w + h_{\Delta}(\tilde{y})$, where \tilde{y} is y with Δ slots truncated on each side. Towards (II), observe that chain C may gain weight at most $B + \#_{[a]}(y) + \Delta$ until slot s_{right} (the Δ is relevant when $s_{\text{right}} < s'$).

Therefore, in order to be dominant in slot s_{right} , it is necessary that

$$\#_{[a]}(y) + (B + \Delta) \geq h_{\Delta}(\tilde{y}),$$

which contradicts GLS condition (10) (cf. Definition 24).

To conclude the base case, observe that the first part of Lemma 29 implies that all chains dominant at any point after the first cycle c_1 thus contain an honest block in the HCI period of c_1 .

The induction step follows along similar lines, but anchoring the argument at the honest block known to exist in the HCI period of the previous cycle. Specifically, assume the lemma holds up to cycle c_{n-1} . Then, to establish the lemma for c_n , inductively identify an honest block B in the HCI period of c_{n-1} and redo the above argument, adding the portion of the leader string between B and the end of the last 0-round to the GLS property as x_{pre} (cf. Definition 24).

4.9.1.2 Round Number of Last Certificate on Chain

► **Lemma 31.** *Consider an execution spanning exactly n rounds and assume a good leader string is chosen. Further, assume that the execution yields a valid voting string $\sigma \in \{0, 1, ?\}^n$ of the form*

$$\sigma = \dots 1 ? 0^{L'} (? 0^{K-1})^v ? 0^L$$

for $L' \in \{K-2, K-1\}$, $v \geq 0$, and $L \geq 0$. Then, there is an integer $c \geq 0$ such that for all parties P , $\text{round}(\text{cert}_{P,n+1}^*) = n - L - cK$.

Proof. Let r_1 be the last 1-round in σ and $r_?$ be the ?-round immediately following r_1 ; let $r'_?$ be the first ?-round after $r_?$.

First, note that since there is a complete CI period following r_1 , Lemma 29, Part 2, (with $M = n$) implies that the certificate from round r_1 appears on the chain of every honest party at the beginning of round $n + 1$; thus, $\text{round}(\text{cert}_{P,n+1}^*) \geq r_1$.

Assume now the lemma is false. It follows immediately that any potential certificates from $r'_?$ and all following ?-rounds cannot be $\text{cert}_{P,n+1}^*$ since they would satisfy $\text{round}(\text{cert}_{P,n+1}^*) = n - L - cK$ for some integer $c \geq 0$. Therefore, the only options left are $\text{round}(\text{cert}_{P,n+1}^*) \in \{r_1, r_?\}$.

Furthermore, observe that $r'_? - r_? \geq K - 1 = T_{\text{HCI}} + T_{\text{CS}}$, which means, by Lemma 29, Part 1, that at the beginning of round $r'_?$ the inclusion window for the certificate from $r_?$ was in the settled part of the ledger. Thus, $\text{cert}_{P,r'_?}^*$ was the same for all P and could not have changed until round $n + 1$, i.e., $\text{cert}_{P,r'_?}^* = \text{cert}_{P,n+1}^*$.

The assumption that the lemma is false now implies that

- either $\text{round}(\text{cert}_{P,n+1}^*) = \text{round}(\text{cert}_{P,r'_?}^*) = r_1$ and $L' = K - 1$
- or $\text{round}(\text{cert}_{P,n+1}^*) = \text{round}(\text{cert}_{P,r'_?}^*) = r_?$ and $L' = K - 2$,

both of which violate VR-2B. ◀

4.9.2 Proof of The Voting String Theorem

Proof (of Theorem 28). The proof is by induction on the length of σ . The base case for $|\sigma| = 1$ follows from rule (I) since $\sigma_1 = 1$ by definition.

Assume now the theorem holds for $|\sigma| = n$. One must show that σ_{n+1} follows the HS rules. To that end consider the following case distinction:

- **Case $\sigma_n = 1$:** In this case, at least one honest party saw a round- n certificate by the end of round n and will consequently, due to VR-1, cast a vote in round $n + 1$. Therefore, $\sigma_{n+1} \in \{?, 1\}$, which follows HS-II.
- **Case $\sigma_n = ?$:** In this case, the only permissible extension of σ is $\sigma_{n+1} = 0$, using HS-III. To show this, first observe that $\sigma_n = ?$ implies that no honest party has seen a round- n certificate by the end of round n , and therefore, VR-1 is false for all of them at the beginning of round $n + 1$. Furthermore, by the induction hypothesis, the HS rules preclude $\sigma_{n-1} = ?$. Thus, consider the following two subcases:
 - *Case $\sigma_{n-1} = 1$:* At least one honest party must have seen a round- $(n - 1)$ certificate by the end of round $n - 1$. Since $U \geq \Delta$, that certificate will be delivered to all honest parties before the beginning of round $n + 1$, and therefore, $\text{round}(\text{cert}'_{P,n+1}) \geq n - 1$ for all honest P .
 - *Case $\sigma_{n-1} = 0$:* Using the induction hypothesis, the HS rules imply

$$\sigma = \dots 1 ? 0^{L'} (? 0^{K-1})^v ?$$

for some $L' \in \{K - 1, K - 2\}$ and $v \geq 0$. Using Lemma 31 with $L = 0$, one obtains that $\text{round}(\text{cert}_{P,n+1}^*) = n - cK$ for some $c \geq 0$ for all honest parties P . Therefore, $n + 1 - \text{round}(\text{cert}_{P,n+1}^*) = cK + 1$, which means that no honest party votes in round $n + 1$. Thus, $\sigma_{n-1} = 0$.

- **Case $\sigma_n = 0$:** Again, observe that $\sigma_n = 0$ implies that no honest party has seen a round- n certificate by the end of round n , and therefore, VR-1 is false for all of them at the beginning of round $n + 1$.

By the induction hypothesis and the HS rules, $\sigma = \dots ? 0^L$ for $1 \leq L \leq K - 1$. Consider the following subcases depending on L :

- *Case $L < K - 2$:* In this case, the only permissible extension of σ is $\sigma_{n+1} = 0$, using HS-IV or HS-VI. To show this, consider the following further subdivision:
 - * *Case $\sigma = \dots 1 ? 0^L$:* Let r_1 be the last 1-round in σ . Another case distinction is necessary to distinguish cases where VR-2A or VR-2B is applicable and to show $\sigma_{n+1} = 0$, which follows HS-IV:
 - *Case $L + 2 < R$:* Observe that the certificate from r_1 was delivered to all honest parties by the beginning of round $n + 1$ and thus, $\text{round}(\text{cert}'_{P,n+1}) \geq n + 1 - (L + 2)$. Consequently, $n + 1 - \text{round}(\text{cert}'_{P,n+1}) \leq L + 2 < R$, which falsifies VR-2A for all P . Hence, $\sigma_{n+1} = 0$.
 - *Case $L + 2 \geq R$:* Since $n + 1 - r_1 = L + 2 \geq R$ and $R, A \geq T_{\text{HCl}}$, Lemma 29, Part 2, (with $M = n$) implies that the certificate from r_1 is on every chain held by an honest party at the beginning of round $n + 1$, i.e., $\text{round}(\text{cert}^*_{P,n+1}) \geq r_1$ for all P . Since therefore, $n + 1 - \text{round}(\text{cert}^*_{P,n+1}) \leq L + 2 < K$, VR-2B is false and no P votes in round $n + 1$. That is, $\sigma_{n+1} = 0$.
 - * *Case $\sigma = \dots 0 ? 0^L$:* Using the induction hypothesis, the HS rules imply

$$\sigma = \dots 1 ? 0^{L'} (? 0^{K-1})^v ? 0^L$$

for some $L' \in \{K - 1, K - 2\}$ and $v \geq 0$. Using Lemma 31, one obtains that $\text{round}(\text{cert}^*_{P,n+1}) = n - L - cK$ for some $c \geq 0$ for all honest parties P . Therefore, $n + 1 - \text{round}(\text{cert}^*_{P,n+1}) = n + 1 - (n - L - cK) = cK + L + 1$, which is not a multiple of K since $2 \leq L + 1 < K - 1$. Hence, VR-2B is false and no honest party votes in round $n + 1$ and $\sigma_{n+1} = 0$, which follows HS-VI.

- *Case $L = K - 2$:* Consider the same two subcases as in the previous case:
 - * *Case $\sigma = \dots 1 ? 0^L$:* According to the HS rules, any symbol is acceptable as σ_{n+1} and hence, there is nothing to show.
 - * *Case $\sigma = \dots 0 ? 0^L$:* Similarly to above, using Lemma 31, one obtains that $n + 1 - \text{round}(\text{cert}^*_{P,n+1}) = cK + L + 1$, which is not a multiple of K since $L + 1 = K - 1$. Hence, VR-2B is false and no honest party votes in round $n + 1$ and $\sigma_{n+1} = 0$, which follows HS-VI.
- *Case $L = K - 1$:* Let r_1 and $r_?$ be the last 1-round and $?$ -round in σ , respectively. Note that $\text{cert}'_{P,n+1} \leq r_?$ and thus, clearly, $n + 1 \geq \text{cert}'_{P,n+1} + R$, which means that VR-2A is satisfied for all honest parties. One final time, consider the same two subcases as in the previous cases:
 - * *Case $\sigma = \dots 1 ? 0^L$:* Observe that $n - r_? = K - 1 = T_{\text{HCl}}$, $\text{round}(\text{cert}^*_{P,n+1}) = \text{round}(\text{cert}^*_{P,n})$ (using Lemma 29, Part 1), and, moreover, $\text{round}(\text{cert}^*_{P,n}) \geq r_1$ since $A \geq T_{\text{HCl}}$. Since $\sigma_n = 0$, no honest party voted in round n . This is only possible if the certificate from $r_?$ was already on the chain in round n , i.e., $\text{round}(\text{cert}^*_{P,n}) = r_?$. Hence, VR-2B is satisfied for all honest parties. It follows that all honest parties vote in round $n + 1$ and $\sigma_{n+1} \in \{?, 1\}$, which follows HS-V.
 - * *Case $\sigma = \dots 0 ? 0^L$:* Similarly to above, using Lemma 31, one obtains that $n + 1 -$

$\text{round}(\text{cert}_{P,n+1}^*) = cK + L + 1$, which is a multiple of K since $L + 1 = K$. Hence, VR-2B is satisfied for all honest parties and all honest parties vote in round $n + 1$ and $\sigma_{n+1} \in \{?, 1\}$, which follows HS-VII. \blacktriangleleft

4.10 Concluding the Consistency Proof

► **Theorem 32.** *The Peras protocol satisfies consistency except with negligible probability.*

Proof. Assume a good leader string is chosen, which fails to happen only with negligible probability, according to Lemma 27. Let C be the chain output by some honest party P in slot ℓ . It suffices to show that C is a prefix of the preferred chain $C_{\text{pref}, P'}$ of any party P' in any slot $\ell' \geq \ell$.

To that end, let ℓ^* be the pruning slot as described in Figure 1. Consider the following two cases, corresponding to the two methods of pruning, where $\rho \in \{0, 1\}^*$ is the string such that $\rho_i = 1$ if and only if a round- i certificate has been seen by P :

1. $\ell^* + D$ is followed by at least $\lceil T_{\text{CS}}/B \rceil$ complete rounds i with $\rho_i = 1$: in this case, starting at most at κ_1 , the margin relative to ℓ^* reaches $-\kappa_2$ by the end of the happy periods.
2. ℓ^* is followed by at least $T_{\text{CS}} + K$ complete rounds i with $\rho_i = 0$: in this case ℓ^* is followed by an entire CS period of a cooldown, at which point it reaches $-\kappa_2$.

In either case, an argument similar to that in the proof of the first part of Lemma 29 shows that the margin relative to ℓ^* remains negative forever. This in conjunction with Lemma 15 yields the desired claim. \blacktriangleleft

4.11 Liveness

► **Theorem 33.** *The Peras protocol satisfies liveness with parameter $u = O((T_{\text{HCl}} + T_{\text{HL}})U)$ except with negligible probability.*

Proof. Assume a good leader string is chosen. Let ℓ be some slot and assume that the environment provides a transaction for inclusion to all honest parties in every slot until slot $\ell + u$. It suffices to prove that every chain held by an honest player after $\ell + u$ contains at least one honest block in the interval $[\ell, \ell + u]$.

First, note that an argument similar to that of the second part of Lemma 29 shows that if ℓ is followed by T_{HL} complete 1-rounds, there is an honest block in $[\ell, \ell + u]$, based on the fact that the leader string has (T_{HL}, D, U) -happy-chain-quality.

Otherwise, it takes at most $O((T_{\text{HCl}} + T_{\text{HL}})U)$ slots until ℓ is followed by T_{HCl} 0-rounds. Again, an argument similar to that of the second part of Lemma 29 shows that if ℓ is followed by T_{HCl} complete 0-rounds, there is an honest block in $[\ell, \ell + u]$, based on the fact that the leader string has $(T_{\text{HCl}}, B, D, U)$ -cooldown-chain-quality. \blacktriangleleft

4.12 Dynamic-Stake PoS and Bootstrapping from the Genesis Block

A static-stake “longest-chain” (that is, heaviest chain) PoS protocol as the one analyzed so far can be used to bootstrap a PoS protocol with dynamic stake. Since we established the combined security of Ouroboros with a fast settlement feature, the same construction can be used, as the main analytical quantities that establish the security of Ouroboros, namely reach and margin from Definition 13, have been re-proven for our construction to establish safety.

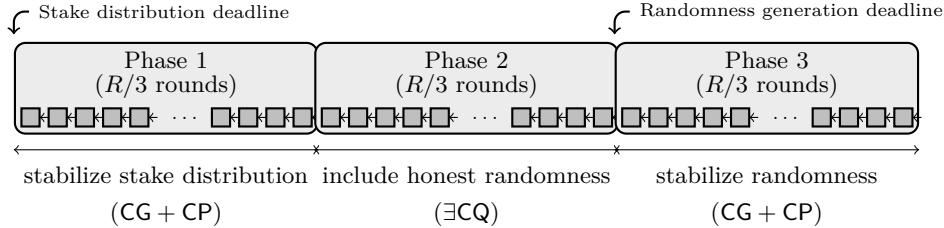


Figure 2 Illustration of the three phases of an epoch for the inductive argument underlying Ouroboros Genesis in the case $(g, h) = (R, R/3)$.

The lifting to the dynamic stake proceeds as follows: multiple rounds are combined into *epochs*, each of which contains $R \in \mathbb{N}$ rounds. The epochs are indexed by $j \in \mathbb{N}$. During epoch j , leader election is based on the stake distribution \mathbb{S}_j recorded in the blockchain up to g rounds before the beginning of this epoch (in [1, 8] the value $g = R$ is chosen). The *epoch randomness* for epoch j is derived as a hash of the additional VRF-values that were included into blocks up to h rounds before the beginning of this epoch (in [1, 8] the value $h = R/3$ is chosen).

Security of the full protocol. Lifting the security argument to the full protocol requires additional reasoning to account for the inductive epoch structure. For ease of exposition, we first consider the case $(g, h) = (R, R/3)$.

As depicted in Figure 2, each epoch then consists of three *phases*: Phase 1 must ensure stabilization of the stake distribution for the next epoch, which is taken from the last block before this first phase starts—this block must be stable before the phase ends. This property is argued via a combination of the standard chain-growth (CG) and common-prefix (CP) blockchain properties. Phase 2 guarantees the inclusion of an honest block within this phase in any surviving chain, and relies on the existential chain quality ($\exists CQ$) guarantee. Finally, the role of Phase 3 is to stabilize all the randomness-determining blocks (those belonging to the rounds of Phase 2) via the same combination of CG and CP arguments as the first phase. We refer an interested reader to [1, Theorem 7, full version] for details of this argument.

The logic of the argument remains unchanged in the general case: if $B_{<t-g}$ and $B_{<t-h}$ denote, respectively, the last blocks affecting the stake distribution and randomness to be used in some epoch e , then the following two conditions are required by the inductive argument:

- (C1) $B_{<t-g}$ must become stable sufficiently early to allow for a guaranteed honest contribution to the randomness for e after that; and
- (C2) $B_{<t-h}$ must become stable by the beginning of the epoch e .

Weight-based Genesis Rule. Ouroboros Genesis implements a secure procedure for parties to join the execution later only knowing the correct genesis block using the so-called *Genesis rule*: Joining parties determine their state by listening to the broadcast chains for sufficiently long and applying a specific rule to choose the one they adopt as their state. Namely, for any pair of two competing chains, if they branch in very recent past the longer one is preferred; but if they branch in more distant past, a joining party gives preference to a chain that is more dense (i.e., contains more blocks) in a fixed period of gw rounds after the branching point of these two chains (where gw is a protocol parameter chosen in the order of the security parameter(s)). Recall that honest parties sign off blocks as well as votes for certificates using key-evolving signatures to tame adaptive corruptions.

Not surprisingly, our *adjusted Genesis Rule* simply states that density is not measured in blocks but more generally in weight, which is accumulated by blocks (weight of 1) as well as certificates (additional weight B for a certified block).

► **Definition 34** (Weight-based Genesis Rule). *Let P be a party. For any pair of two competing chains C_1 and C_2 , let B be their last common block in slot s and consider the set of slots $I_{\text{gen}} = [s + 1, \dots, s + \text{gw}]$ of size gw . Party P gives preference to the chain that carries more accumulated weight on interval I_{gen} in the local view of P , where weight accumulation happens by means of blocks with slot numbers $s' \in I_{\text{gen}}$, whereby each block has weight 1 and any known certificate certifying a block in interval I_{gen} adds an additional weight B .*

This chain preference rule implies that a party P is following the heaviest chain unless the diverging slot is more than gw slots away from the current time. This also implies that the last common block must be buried under weight in the order of the security parameter on both candidate chains.

Security proof. The core of the security argument is an adaptation of [1, Theorem 2] to our new setting. Intuitively, the theorem asserts that the chain honest parties maintain (ignoring new joiners), is denser in any window of length gw than any chain that could be forged by an adversary.

► **Lemma 35.** *Consider an execution of the dynamic-stake PoS protocol with the weight-based Genesis Rule and let κ denote a security parameter. Consider the first slot $\hat{\ell}$ in which some honest party P (present since the beginning of the execution) received candidate chain \hat{C} heavier than its locally adopted chain C_{loc} at the onset of slot $\hat{\ell}$ and assume the two chain fork where the last common block B has slot $\ell^* < \hat{\ell} - \text{gw}$. Then, the honest party P discards \hat{C} except with negligible probability.*

Proof. We first recall that the weight accumulation in the interval of length gw after slot ℓ^* accumulates by two mechanism. Each successful voting round for a boost of a vertex v with $l_{\#}(v) > \ell^*$ adds at least weight $B >> U$ to the chain, where, for the sake of concreteness, we can assume $B = \kappa/c$ for a constant c . Furthermore, these heavy blocks must be on the same chain corresponding to the sequence of 1-rounds (if any) aligned with slots $\ell > \ell^*$. Also recall that the blocks for each certificate are not necessarily distinct. The second weight increase stems from blocks alone.

For the sake of reaching a contradiction, assume now that P accepts \hat{C} as its preferred chain due to the condition $\text{Wt}_P(\hat{C}[\ell^* + 1, \ell^* + \text{gw}]) > \text{Wt}_P(C_{\text{loc}}[\ell^* + 1, \ell^* + \text{gw}])$. From the results in Section 4.9.1 we see that over the course of κ/U slots, we obtain at least chain growth on the interval of size gw on C_{loc} in the order of $\Omega(\kappa)$, i.e., adopting the candidate chain \hat{C} indeed causes a rollback of at least weight κ if adopted by P by definition of ℓ^* . By the above condition this implies that the candidate chain \hat{C} must have accumulated at least as much weight on the same interval.

It remains to argue that we can construct a consistency violation in this execution in the order of κ . Let us first define the following two quantities:

- Let s_1^* be the slot corresponding to the first honestly generated block in C_{loc} with slot number strictly greater than $\ell^* + \text{gw}$; otherwise $s_1^* := \hat{\ell}$.
- Let s_2^* be the first slot with slot number strictly greater than $\ell^* + \text{gw}$ and associated with a block for which at least one honest party holds a certificate. If no such block exists, let $s_2^* := \hat{\ell}$.

We let $\hat{s} := \min\{s_1^*, s_2^*\}$ and make a case distinction:

1. $\hat{s} = \hat{\ell}$: This case implies that C_{loc} after the genesis window and up to the current time $\hat{\ell}$ has no honest block and no certificates are known to P to boost any of these blocks (notice that no certificates could have been formed for a block of slot $\hat{\ell}$ at this point). This implies that we can build a dominant chain from the competing chain \hat{C} restricting the characteristic string to slots $0 \dots \hat{\ell}$: we extend \hat{C} starting after $\ell^* + gw$ with a block for any slot s , with $\ell^* + gw < s < \hat{s}$, when the slot leader is adversarial. Let's call this extension \hat{C}' . Since the only weight increase until (and including) $\hat{\ell}$ on C_{loc} is by blocks only, the constructed extension witnesses a consistency violation of order $\Omega(\kappa)$ since $Wt_P(\hat{C}[0, \hat{s} - 1]) > Wt_P(C_{loc}[0, \hat{s} - 1])$ implies that \hat{C}' must be a dominant chain at slot $\hat{s} - 1$ and the two chains fork at a block buried by at least weight κ . Dominance follows by the fact that either the block for slot $\hat{\ell}$ to C_{loc} is honest and thus any chain with at least that weight is dominant, or otherwise we can further extend \hat{C} to be heavier than C_{loc} by appending one more block. It remains to argue that the slot leadership on both candidate chains is identical. This follows by choosing gw as a fraction of an epoch such as $R/6$, where the epoch is a constant multiple of κ . This concludes the first case.
2. $\hat{s} < \hat{\ell}$: The condition implies that after the genesis window and up slot number $\hat{s} - 1$, C_{loc} cannot contain an honest block and no certificates are known to P to boost any of these blocks associated with slots up to $\hat{s} - 1$. From the existence of either an honest block or a certificate for a block with slot number \hat{s} we again extend the competing chain \hat{C} restricting the characteristic string to slots $0 \dots \hat{\ell}$: we extend \hat{C} starting after $\ell^* + gw$ with a block for any slot s , with $\ell^* + gw < s < \hat{s}$, when the slot leader is adversarial. We again argue that this extension of \hat{C} is dominant in the execution up to including slot $\hat{s} - 1$, which implies a consistency violation in the order of κ as above.

If slot \hat{s} is associated with an honest block on C_{loc} , then an honest party must have extended a chain at most as heavy as the constructed competing chain, proving its dominance.

If slot \hat{s} is associated with a certified block B^* , then some honest party must have had block B^* on its heaviest chain at the time of voting. Therefore, define the pair (P', s') as follows: P' is the first honest party to adopt a chain containing B^* and this chain is adopted in slot s' . Clearly $\hat{s} \leq s'$ and by definition of \hat{s} , when P' decided to adopt the chain, no certificate for B^* has been formed. We can thus conclude the dominance of our constructed competing chain by observing that we can repeat the above argument for the first slot in $[\hat{s}, \dots, s']$ that is associated with an honestly generated block on C_{loc} , if any, and otherwise, our competing chain is dominant in slot s' if none of the blocks until including s' are associated with honest blocks on C_{loc} .

This concludes the statement. ◀

As shown in [1], the security for newly joining parties follows from the above statement in a modular way: suppose we have a newly joining party P^* in slot s^* . We compare the behavior of P^* to a so-called “virtual party” \widehat{P}^* that is observing the network since the beginning and after slot s^* , the virtual party receives exactly the same messages as P^* . We consider the first chain C_{sync} the virtual party receives and adopts after s^* . Let's call this slot s_{sync} .

We know that if party P^* adopts C_{sync} too, then it has safely joined the network, since the virtual party enjoys the security guaranteed by Lemma 35. Hence, assume now for the sake of contradiction that P^* receives C_{sync} but unlike its virtual counterpart, it discards it

due to another chain C_1 held at that point in time. First, notice that both parties are aware of both chains by definition. We can now make a case distinction:

- If the virtual is adopting C_{sync} when it is holding C_1 too at slot s_{sync} , this implies that C^* could not have won the Genesis comparison as defined in Definition 34.
- If the virtual party is adopting C_{sync} in slot s_{sync} when holding a different chain than C , then at some time prior to s_{sync} it must have adopted some chain C_2 that has been preferred to C_1 , either because C_1 has been received and discarded in favor of C_2 , or because C_2 was adopted replacing C_1 . Therefore, C_2 wins the Genesis comparison against C_1 , and we know that C_{sync} wins the Genesis comparison against C_2 . Hence, the only reason why P^* can discard C_{sync} is because C_1 wins the Genesis comparison against C_{sync} . This constellation necessarily leads to a contradiction: consider the forking points of the three chains: let s_{12} be the slot of the last common block of chains C_1 and C_2 and let $s \leq s_{12}$ be the slot of the last common block of all three chains in question. If $s \geq s_{sync} - gw$, then C_{sync} must be the longest chain among them and the comparison is transitive, hence C_1 could not have been preferred. If $s < s_{sync} - gw$, P^* could only have accepted C_1 if C_1 wins the Genesis comparison to C_{sync} , which implies that the virtual party would actually also prefer C_1 over C_{sync} . This which contradicts Lemma 35 since $s < s_{sync} - gw$ and the virtual party is present from the beginning.

4.13 On Self-Healing in the Presence of the Voting Overlay

It is known that Nakamoto-style PoS can be instantiated to be self-healing with budget \mathcal{B} [2]. It is straightforward to show that in the same sense, our protocol can be instantiated to be self-healing with budget \mathcal{B} . Recall from Section 2 that we only consider spike-attacks as resulting from low honest participation leaving a relative majority to the adversary. In such a scenario, (voting) committees are never adversarially dominated (with overwhelming probability) since the absolute majority is still in the hands of honest (but offline) participants.

► **Theorem 36.** *Consider an execution of the protocol with adjusted cooldown parameters $T'_{HCl} = \Theta(T_{HCl} + \mathcal{B})$ and $T'_{CS} = \Theta(T_{CS} + \mathcal{B})$ in the order of the the anticipated spike-budget \mathcal{B} and let slot ℓ^* be the first slot such that the spike-budget is fully spent by ℓ^* . Then, with overwhelming probability, the protocol with the adjusted parameters is self-healing with budget \mathcal{B} .*

Proof Sketch. Consider the first round r^* where the honest majority condition is restored. We make a case distinction.

- **r^* is during a cooldown.** For the adjusted parameters as in the statement above, we now argue that we can re-establish the requirements needed for a safe restart as in Lemma 29. To this end, we need to guarantee certificate inclusion by T'_{HCl} as well as settlement on the certificate at the end of the cooldown. We can do this via the following case analysis:

1. Let r be the smallest slot number such that no older certificate can be included any longer in any block with slot number r or higher, and let $r^* < r$.

If $r - r^* > \mathcal{B} + T_{HCl}$, we can heal until the restart by [2], since we are running a Nakamoto-consensus for sufficiently long to absorb the additional spike and have the time window T_{HCl} as before to achieve chain quality. Furthermore, settlement by the end of the cooldown period happens within T_{CS} slots. Otherwise, we know we are less than $\mathcal{B} + T_{HCl}$ slots away from the certificate inclusion. For an appropriate

choice of a cooldown duration in $\Theta(\mathcal{B} + T_{\text{HCl}})$, we are guaranteed that the spike-attack starts sufficiently distant after the start of the cooldown and at a point where the certificate has been included by after T_{HCl} since the start of the cooldown. Furthermore, by [2], any established chain-quality property on that portion of the Nakamoto-chain will not be affected by the spike since the vulnerability window does affect the start of the cooldown. Furthermore, we know that at least T'_{CS} slots are do be executed until the end of the cooldown, in which case, again by [2], since we are running a Nakamoto execution as argued in Lemma 29, it can heal from the additional spike and subsequently settle normally within T_{CS} as in Lemma 29.

2. In the other case, we are at an advanced state of the cooldown period. Similar to above, chain quality up to the certificate inclusion deadline is not jeopardized by the later spike and what is left to argue here is that settlement is achieved at the end of the cooldown. This follows by an analogous case distinction as above depending on whether the spike happens close to the end of the cooldown, at which point its effect cannot revert the chain back to the point of the certificate-inclusion deadline, or whether the spike happens distant to the end of the cooldown, in which case the last segment of the cooldown period is able to heal and settle as we are in a normal Nakamoto-execution to reach margin of $-\kappa_2$ by definition of T_{CS} .
 - **r^* is during a sequence of 1-rounds.** We know from Theorem 16 that margin decreases during 1-rounds since B still dominates the total number of active slots (cannot increase during a spike-attack since the spike is formed by reduced honest participation). Hence, we either heal as margin hits 0 during this sequence of 1-rounds, or we enter cooldown at which case the above case applies.

This concludes the proof. ◀

The dynamic-stake case. As shown in [2], the ability to self-heal is impacted by the inductive epoch-structure when lifting the static case to the dynamic case. In particular, the PoS protocol only self-heals against adversaries that are not able to raise margin above a certain level determined by the protocol parameters R , g , h , and gw of Section 4.12, in which self-healing follows for the full protocol immediately. Thus, qualitatively, given a level of anticipated adversarial dominance, one can choose a parametrization that withstands against attacks of that anticipated strength (but not against a more powerful attack).

References

- 1 Christian Badertscher, Peter Gazi, Aggelos Kiayias, Alexander Russell, and Vassilis Zikas. Ouroboros genesis: Composable proof-of-stake blockchains with dynamic availability. In David Lie, Mohammad Mannan, Michael Backes, and XiaoFeng Wang, editors, *ACM CCS 2018*, pages 913–930. ACM Press, October 2018. doi:10.1145/3243734.3243848.
- 2 Christian Badertscher, Peter Gaži, Aggelos Kiayias, Alexander Russell, and Vassilis Zikas. Consensus redux: Distributed ledgers in the face of adversarial supremacy. Cryptology ePrint Archive, Paper 2020/1021, 2020. Computer Security Foundation (CSF) 2024, to appear. URL: <https://eprint.iacr.org/2020/1021>.
- 3 Vitalik Buterin and Virgil Griffith. Casper the friendly finality gadget, 2019. arXiv:1710.09437.
- 4 Miguel Castro and Barbara Liskov. Practical Byzantine Fault Tolerance. In *3rd Symposium on Operating Systems Design and Implementation (OSDI 99)*, New Orleans, LA, February 1999. USENIX Association.

- 5 Jing Chen and Silvio Micali. Algorand: A secure and efficient distributed ledger. *Theoretical Computer Science*, 777:155–183, 2019. In memory of Maurice Nivat, a founding father of Theoretical Computer Science - Part I.
- 6 Francesco D’Amato, Joachim Neu, Ertem Nusret Tas, and David Tse. Goldfish: No more attacks on ethereum?! Cryptology ePrint Archive, Paper 2022/1171, 2022. Financial Cryptography 2024, to appear. URL: <https://eprint.iacr.org/2022/1171>.
- 7 Francesco D’Amato and Luca Zanolini. Recent Latest Message Driven GHOST: Balancing Dynamic Availability With Asynchrony Resilience . In *2024 IEEE 37th Computer Security Foundations Symposium (CSF)*, pages 127–142, Los Alamitos, CA, USA, July 2024. IEEE Computer Society. URL: <https://doi.ieeecomputersociety.org/10.1109/CSF61375.2024.00001>, doi:10.1109/CSF61375.2024.00001.
- 8 Bernardo David, Peter Gazi, Aggelos Kiayias, and Alexander Russell. Ouroboros praos: An adaptively-secure, semi-synchronous proof-of-stake blockchain. In Jesper Buus Nielsen and Vincent Rijmen, editors, *EUROCRYPT 2018, Part II*, volume 10821 of *LNCS*, pages 66–98. Springer, Heidelberg, April / May 2018. doi:10.1007/978-3-319-78375-8_3.
- 9 Thomas Dinsdale-Young, Bernardo Magri, Christian Matt, Jesper Buus Nielsen, and Daniel Tschudi. Afgjort: A partially synchronous finality layer for blockchains. In Clemente Galdi and Vladimir Kolesnikov, editors, *SCN 20*, volume 12238 of *LNCS*, pages 24–44. Springer, Heidelberg, September 2020. doi:10.1007/978-3-030-57990-6_2.
- 10 Pesech Feldman and Silvio Micali. An Optimal Probabilistic Protocol for Synchronous Byzantine Agreement. *SIAM Journal on Computing*, 26(4):873–933, 1997.
- 11 Peter Gazi, Aggelos Kiayias, and Alexander Russell. Tight consistency bounds for bitcoin. In Jay Ligatti, Xinming Ou, Jonathan Katz, and Giovanni Vigna, editors, *ACM CCS 2020*, pages 819–838. ACM Press, November 2020. doi:10.1145/3372297.3423365.
- 12 Peter Gazi, Ling Ren, and Alexander Russell. Practical settlement bounds for longest-chain consensus. In Helena Handschuh and Anna Lysyanskaya, editors, *CRYPTO 2023, Part I*, volume 14081 of *LNCS*, pages 107–138. Springer, Heidelberg, August 2023. doi:10.1007/978-3-031-38557-5_4.
- 13 Peter Gaži, Zahra Motaqy, and Alexander Russell. A tight analysis of GHOST consistency. Cryptology ePrint Archive, Paper 2024/1830, 2024. URL: <https://eprint.iacr.org/2024/1830>.
- 14 Rati Gelashvili, Lefteris Kokoris-Kogias, Alberto Sonnino, Alexander Spiegelman, and Zhuolun Xiang. Jolteon and Ditto: Network-Adaptive Efficient Consensus with Asynchronous Fallback. In *Financial Cryptography and Data Security: 26th International Conference, FC 2022, Grenada, May 2–6, 2022, Revised Selected Papers*, pages 296–315, Berlin, Heidelberg, 2022. Springer-Verlag.
- 15 Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov. Ouroboros: A provably secure proof-of-stake blockchain protocol. In Jonathan Katz and Hovav Shacham, editors, *CRYPTO 2017, Part I*, volume 10401 of *LNCS*, pages 357–388. Springer, Heidelberg, August 2017. doi:10.1007/978-3-319-63688-7_12.
- 16 Dahlia Malkhi, Atsuki Momose, and Ling Ren. Towards practical sleepy bft. In *Proceedings of the 2023 ACM SIGSAC Conference on Computer and Communications Security, CCS ’23*, page 490–503, New York, NY, USA, 2023. Association for Computing Machinery. doi:10.1145/3576915.3623073.
- 17 Joachim Neu, Ertem Nusret Tas, and David Tse. Ebb-and-flow protocols: A resolution of the availability-finality dilemma. In *2021 IEEE Symposium on Security and Privacy*, pages 446–465. IEEE Computer Society Press, May 2021. doi:10.1109/SP40001.2021.00045.
- 18 Rafael Pass and Elaine Shi. Hybrid consensus: Efficient consensus in the permissionless model. In *International Symposium on Distributed Computing*, 2016. URL: <https://api.semanticscholar.org/CorpusID:1171104>.
- 19 Rafael Pass and Elaine Shi. Thunderella: Blockchains with optimistic instant confirmation. In Jesper Buus Nielsen and Vincent Rijmen, editors, *EUROCRYPT 2018, Part II*, volume

10821 of *LNCS*, pages 3–33. Springer, Heidelberg, April / May 2018. doi:10.1007/978-3-319-78375-8_1.

20 Alistair Stewart and Eleftherios Kokoris-Kogia. Grandpa: a byzantine finality gadget, 2020. arXiv:2007.01560.