Efficient Batch Opening Schemes for Merkle Tree
Commitment with Applications to Trustless
Cross-chain Bridge

Bingsheng Zhang'!, Wuyunsiqin', Xun Zhang', Markulf Kohlweiss*?, Kui Ren!

I'The State Key Laboratory of Blockchain and Data Security, Zhejiang University,
Hangzhou, China, {bingsheng, 3210101763, 22221082, kuiren} @zju.edu.cn
2School of Informatics, University of Edinburgh,

Edinburgh, United Kingdom, mkohlwei@ed.ac.uk
3Input Output

Abstract—In blockchain systems, Merkle trees represent a
fundamental cryptographic structure for verifying the validity of
public keys in digital signatures. However, the verification process
presents significant computational challenges, particularly when
dealing with large-scale public key participation in signing
operations. This paper focuses on addressing the efficiency
bottlenecks in public key validity verification within Merkle
tree commitments, with particular emphasis on their application
in trustless cross-chain bridge protocols. While existing cross-
chain solutions predominantly rely on zero-knowledge proofs for
blockchain state validation, the inherent computational cost of
proof generation remains prohibitive.

We present a novel batch opening scheme for Merkle tree
commitments that synergistically integrates Merkle tree con-
struction from permutation arguments to verify the membership
of extensive leaf sets. Our approach demonstrates remarkable
proof generation efficiency advantages, particularly maintaining
consistent performance regardless of the number of opened
leaves, given a fixed tree depth. Our methods significantly reduce
the computational overhead associated with public key validity
verification. Meanwhile, it is fully applicable to the existing
classical Merkle tree structure without any modifications and
has universality.

To demonstrate the practicality and efficiency of our scheme,
We implemented the Merkle tree opening circuit for three hash
functions (Poseidon, Rescue and Keccak) based on our scheme.
Our evaluation shows that the batch opening scheme achieves
better performance: proof generation time begins to shorten from
an opening ratio of (.25, achieving a 3.5 to 7.1x improvement at
a ratio of 0.75 (with tree depth = 9). Similar improvements are
also reflected in the proof size and verification time. Moreover,
as tree depth increases, our method’s performance advantages
become more pronounced.

Index Terms—Merkle Tree, Trustless Cross-Chain Bridge,
Zero-Knowledge Proof

I. INTRODUCTION

Light clients [1] are specialized nodes within a blockchain
network that interact with the system without maintaining
the complete blockchain history. When a light client needs
to verify a set of transactions, it retrieves the block header
at a specific height h. However, without full access to the

transaction history, the client is unable to verify the entire
chain of block headers on its own.

A common solution to this problem is the use of validators
(or signers) who digitally sign the block header to certify its
validity. This signature, often implemented as a multisignature
or aggregate signature, provides a trust mechanism that assures
the light client of the header’s authenticity without requiring
full verification. Multisignature schemes, such as those in
the Schnorr family [2] or pairing-based BLS signatures [3],
are capable of aggregating many individual signatures—even
those from different keys—into a single compact signature.

In order to verify a multisignature, the verifier constructs
an aggregated verification key from ¢ public keys that are
committed in a Merkle tree. However, this aggregation process
introduces a vulnerability to rogue key attacks [4], where an
adversary might forge a multisignature by misrepresenting the
associated public keys.

To mitigate this risk, it is essential for the light client to
obtain a proof that the aggregated verification key has been
correctly assembled. Although one approach is to include the
Merkle tree paths from the root to the public keys within
the signature, a more concise and efficient solution is to
employ zero-knowledge proofs. These proofs enable both the
aggregation of Merkle tree proofs and the multisignatures in
a manner that is both succinct and secure.

A. Our Contribution

In this paper, we present a novel optimization method for
batch opening of Merkle leaves based on permutation argu-
ment. Our approach significantly enhances traditional Merkle
proof verification methods when a large fraction of the leaves
must be verified. The key contributions of our work are as
follows:

Batch Opening Schemes for Merkle Tree. We propose an
efficient batch opening scheme for Merkle trees. By employing
Merkle tree construction and permutation argument, our ap-
proach verifies the membership of a large number of leaves in
the Merkle tree. Under a fixed number of openings, the scheme

offers significant proof speed advantages, with efficiency that
remains independent of the actual number of opened leaves.
Elliptic Curve Encoding. We develop a novel encoding
scheme for elliptic curve points that enables efficient permu-
tation verification while preserving the security of the system.
The proposed compression technique, in combination with our
permutation argument, allows for efficient batch verification
without compromising security.

Comprehensive Evaluation. We conducted extensive exper-
iments comparing our protocol with others. Under different
hash function settings, our batch opening scheme achieves up
to 3.5x ~ 7.1x improvement in proof generation time at an
opening ratio of 0.75. Similar gains are observed in proof size
and verification time, with advantages growing as tree depth
increases.

B. Applications

Our approach has broad applications in blockchain in-
teroperability, particularly in trustless cross-chain bridges
and threshold multisignature validation. Trustless cross-chain
bridges, essential for secure asset and data transfers across
blockchains, often leverage SNARK-based infrastructures for
their succinct proof sizes and fast verification. Our method
efficiently handles batch opening of Merkle tree commitments,
which is a fundamental step in verifying the validity of
a large set of public keys. This is particularly beneficial
in threshold multisignature schemes, such as those used in
Ethereum 2.0 [5], Cosmos [6], and Cardano [7], where a large
number of public keys may be committed in a Merkle tree. By
reducing the cost of opening these commitments, our approach
enhances the efficiency of verifying public key membership
without modifying the underlying signature schemes.

C. Evaluation

Our comprehensive evaluation demonstrates that the pro-
posed SNARK-based approaches deliver significant perfor-
mance improvements over traditional methods. Extensive
experiments using zk-friendly hash functions and various
tree configurations reveal that the SNARK-based Merkle
Tree proof from permutation argument method consistently
achieves lower proof generation times and reduced verification
overhead. These advantages are particularly pronounced in
scenarios where a large proportion of elements require verifi-
cation, as is common in practical multisignature and on-chain
applications. Overall, our results indicate that, although the
optimal method can be selected based on the specific propor-
tion of elements to be opened, the SNARK-based Merkle Tree
proof from permutation argument method proves superior in
most realistic operational settings.

D. Related work

Directly using SNARKSs to construct Merkle proofs and
perform batch aggregation suffers from a significant drawback:
as the number of proofs to verify increases, the computational
cost grows substantially, making it less efficient in large-scale
scenarios.

Recent research has explored designing novel vector com-
mitment schemes to address this challenge. [8] introduces
zkTree, which recursively verifies child zero-knowledge proofs
in a parent node, aggregating multiple proofs into a single
root proof for constant on-chain gas cost. [9] presents Hy-
perproofs, a scheme that combines efficient maintainability
with aggregatability; it produces compact, logarithmic-sized
algebraic hash proofs and aggregates faster than SNARK-
based Merkle Tree proof aggregation. [10] proposes Reckle
Trees, embedding batch hash computation within recursive
Merkle verification via canonical hashing to achieve logarith-
mic update time and enable parallel computation. However,
practical limitations remain: existing blockchains primarily
use Merkle trees, making transitions costly; Hyperproofs may
yield larger proofs and slower verification than SNARK-based
approaches, while Reckle Trees only offer significant benefits
for deep trees, limiting their use in cross-chain applications.

Given these limitations, there remains a need for algorithmic
solutions tailored to cross-chain scenarios that can optimize
Merkle proof verification while maintaining compatibility with
existing blockchain infrastructures and providing efficient on-
chain verification capabilities.

II. PRELIMINARY
A. Notation

Let \ be the security parameter and H : {0, 1}* — {0,1}2*
denote a collision-resistant hash function. For a positive integer
n, let [n] = {0,1,...,n— 1} represent the index set. A vector
a = (ag,...,an—1) denotes a sequence of binary strings
where a; € {0,1}?* for all i € [n]. If the length of a; is
arbitrary, the hash function H is used to compress it to a
fixed size. For any real number z € R, the floor function |x]
is defined as the largest integer n € 7Z satisfying n < x.

B. Succinct Non-Interactive Arguments of Knowledge

A SNARK (Succinct Non-Interactive Arguments of Knowl-
edge) [11] is a protocol where the prover aims to convince the
verifier that they know a witness w such that (z,w) € R for
a statement x and NP relation R. We will work with argu-
ments of knowledge which assume computationally-bounded
provers.

A SNARK is a triple of PPT algorithms II = (Setup,
Prove, Verify) defined as follows:

e srs < Setup(1*):On input security parameter \ , it

outputs a structured reference string srs.
o 7 < Prove(srs, x,w):On input srs, a statement = and the
witness w, it outputs a proof 7.

e 0/1 < verify(srs, z,7):On input srs, a statement x, and
a proof 7, it outputs either 1 indicating accepting the
statement or O for rejecting it.

It satisfies the following properties:

o Perfect Completeness. A SNARK protocol II has perfect

completeness if for all (z,7) € R:

srs + Setup(1?);

Pr lVerify(srs,x, m)=1 =1.

7 < Prove(srs, x, w)

o Knowledge Soundness. For any PPT adversary A, there
exists a PPT extractor X' 4 such that the following prob-
ability is negligible in A:

srs < Setup(1?);

(x,m;w) < A || Xa(srs)

Verify(srs, z,m) = 1
A(z,w) ¢ R

(The notation (z,m;w) + A || X4(srs) means the
following: After the adversary A outputs (x,), we can
run the extractor X4 on the adversary’s state to output w.
The intuition is that if the adversary outputs a verifying
proof, then it must know a satisfying witness that can be
extracted by looking into the adversary’s state.)

o Succinctness. For any x and w, the length of the proof
7 is given by:

|| = poly(X) - polylog(|| + [w]).
C. Merkle Trees

A Merkle tree [12] is a cryptographic data structure used
to compute a succinct and collision-resistant digest C' for an
underlying dataset M := {m; | ¢ € [n]}, which consists
of n = 2% elements (e.g., memory slots, transactions, or
public keys). The digest serves as a compact representation
of the entire dataset and allows for efficient verification of the
correctness of any individual element m;.

Each element in the dataset M, as well as the output of
the hash function H, is assumed to be of size 2\ bits. The
number ¢ denotes the index of the element in the dataset, and
the value of the element is denoted as value(m;).

Following is the definition of the Merkle tree construction,
Merkle proof, and Merkle proof verification.

Merkle Tree Construction. The Merkle tree is constructed by
recursively hashing the elements and internal nodes in pairs
until the root hash (digest) is obtained.

Algorithm 1: Merkle.Construct(M)
Input: A dataset M := {m; | i € [n]}, where n = 2°
Output: Merkle Root C'oo

1 for each data element m; € M do

2 | Compute the hash C; « H(i || value(m;))

3 Initialize C' <+ {Cy,C4,...,Cr_1}

4 while |C]| > 1 do

5 for each pair of consecutive nodes (Caj, Coji1) in
C do

6 L Compute the parent node

Cj < H(Cy; || C2j41)
7 Update C < {C,C1, ... C}}

8 The remaining element in C' is the Merkle Root:

Croot — CO

Merkle Proof. Given a leaf node m; and the root digest Clyt,
the Merkle proof P; := (Sp, S1,...,S¢—1) is a sequence of
sibling hashes along the path from the leaf to the root. Each

Sj.where j € [¢], is the sibling hash at the corresponding tree
level.

Merkle Proof Verification. The verification process uses the
Merkle proof to recompute the root hash and checks if it
matches the known Merkle root.

Algorithm 2: Merkle.Verify(m;, P;, Croot)

Input: Leaf node m; with value value(m;),
index ¢, Merkle proof P; := (Sy,S1,...,Se—1), and
Merkle root Croo
Output: 1 if proof is valid, O otherwise
1 Initialize h + H (i || value(m;))
2for j=0t0 {—1do
3 Let S; be the j-th sibling hash in P;
4 | if [i/27] mod 2 =1 then
5 L h« H(h| S;)

6 else
L h« H(S; || h)

8 return / if h = Cyyp, 0 otherwise

D. Polynomial Commitment

A polynomial commitment [13] allows us to compute a
short value com for a polynomial f of a potential high degree
in a finite field F. Later, one can compute short openings that
certify that the polynomial committed by com evaluates to
B € F at some position « € F. Polynomial commitment should
be binding because it should be impossible to open the same
point to two different values.

A polynomial commitment over a finite field F is a tuple of
PPT algorithms PC = (Setup, Commit, Open, Verify) defined
as follows:

o ck « Setup(1*,1%): The setup algorithm takes a security
parameter A and degree upper bound d as input, and
returns a commitment key ck.

e com <+ Commit(ck, f): The commitment algorithm takes
a commitment key ck and a polynomial f € F[X] as
input, and returns a commitment com.

o 7 < Open(ck, f, @, B): The opening algorithm takes a
commitment key ck, a polynomial f € F[X], a point
a € I, and a value 8 € F as input, and returns an opening
proof .

e b <« Verify(ck,com,m, a, B): The verification algorithm
takes a commitment key ck, a commitment com, an
opening proof 7, a point o € IF, and a value § € F as
input, and returns a bit b indicating whether the opening
is valid.

A polynomial commitment should be binding, meaning it
should be infeasible to open the same commitment com at the
same point « to two different values 57 and fs.

A polynomial commitment should also be hiding, meaning
that the commitment com does not reveal any information
about the polynomial itself beyond what is intentionally dis-
closed. Specifically, given a commitment com to a polynomial

f(z), it should be infeasible for an adversary to extract
any information about the coefficients of f(z) or predict
its value at points other than the ones explicitly revealed
during an opening. This ensures that even if the verifier knows
the commitment com, it learns nothing about the underlying
polynomial until the prover opens the commitment at specific
points.

E. Elliptic Curves

Let E be an ordinary elliptic curve defined over a finite
field IF,,, where p (with p > 5) is a prime. The additive group
E(F,) consists of points (z,y) satisfying the short Weierstrass
equation:

E/F,: y? =23 4+ ax +b,

with ,y € F,, and a point at infinity Op.
Let #E(F,) denote the cardinality of E(IFF,). It is well
known that
#E(Fp) =p+1—t,

where ¢ is the trace of the p-power Frobenius endomorphism
™ (2, y) = (2P, 7).

ITI. MERKLE COMMITMENT WITH SELECTIVE OPENING
A. Definitions

Let M = (mg,mq,...,mn—1) be a sequence of elliptic
curve points used to generate the leaf nodes of a Merkle
tree, where each m; is a point on the elliptic curve E(IF,)
. The order of the points in M determines the structure of
the Merkle tree. Let My = (my,, miy, ..., m;,,_,) denote a
subset of M, where m < n, containing the points selected
for partial opening. I = (ig,%1,...,%m—1) denotes the indices
of the selected points. Let My = (my,my, ..., my

n—m-—1

represent the complement of My within M, i.e., the subset

of points not selected for opening. I' = (i(, 4], ..., 40 _p_1)
denotes the indices of the selected points. The Merkle root
is defined as: Cr,ot = Merkle.Construct(M), where the

sequence of points in M determines the Merkle tree structure
and the Merkle root.

A permutation function o reorders the elements of a vector.
Let A = (ag,a1,...,a,—1) and A’ = (ap,al,...,a,,_;) be
two vectors of the same length. The permutation o acts on the
vector A’ such that:

A =0(A') = a; = ay,, Vi €{0,1,...,n— 1},

where ¢ : {0,1,...,n—1} = {0,1,...,n— 1} is a bijective
function that represents the permutation of indices.

This definition means that the elements of A’ are reordered
according to the permutation ¢ to produce A. The vector-
level permutation o acts by rearranging all elements in A’
simultaneously.

Let f : E(F,)™ x [k] — C be a function that can be
expressed by a arithmetic circuit. Here E(FF;)” is the n-
dimensional vector space consisting of n elliptic curve points
from E(F,), and [k] is the indices of the points to be opened.
C is the output space of the function, which could be a set
of integers, boolean values, or other encoded representations

depending on the circuit design. The function y = f(M,I)
represents the result of applying f to the subset My, producing
an output in C.

The concatenation of vectors or strings is typically denoted
by the symbol ||. For example, the concatenation of two vectors
A and B is represented as A || B. The length of a vector
A = (ag,a1,...,a,—1) is denoted by |A|, which is equal to
n. Again, the notation [n] represents the set of integers from
0ton—1,ie., [n] ={0,1,...,n — 1}. Let ¥}, denote the
ordered vector (0,1,...,n—1) of length n, representing the
identity permutation on n indices.

B. Methods of Merkle Commitment Opening

Strawman Solution. The strawman solution to verify the
result of a function f applied to a subset of the dataset is
to compute it directly and compare it with the provided result.
The relation for this scenario is as follows:

R={(z=My, f)w=®@)[y=f(MI)}

However, this relation is impossible to be applied in the
context of SNARKS, as the size of statement grows linearly
with the number of elements in the dataset, which is not
succinct. Therefore, the verification cost scales linearly and
thus is not succinct, making it impractical for use in trustless
cross-chain contexts.

SNARK-based Merkle Tree Proof. To lower the proof size
and verification cost, an alternative approach is to use a Merkle
tree structure and generate a SNARK proof. We organize
M as a Merkle tree and use the Merkle root C.,.,,: as
the commitment to M. We only need to open the required
elements in M. This results significantly reduced verification
times and more compact proofs. The relation in this case is:

R = {(I = (Crootvya f)?w = (M7Ia PI)) ‘
Vi € I, Merkle.Verify(m;, P;, Croot) = 1

Ny = f(MaI)}v

where P1 = {P; | i € I} denotes the set of Merkle proofs
corresponding to the opened leaves. Each P; is a Merkle proof
as defined in Section II.C.

We then use SNARK to prove this relation. However, when
a significant portion of the elements in M need to be opened,
the cost of the method remains high. When the number of
leaves to be opened is proportional to n, the computational cost
can be significant, with hash computations reaching O(n logn)
in complexity.
SNARK-based Merkle Tree Proof from Permutation Argu-
ment. To lower the proving cost, we propose a more efficient
approach that combines the Merkle tree construction from
permutation argument. This method proves that the selected
set and the unselected set together constitute the original set.
Specifically, we demonstrate that the selected set is a subset
of the original set and establish the relationship between the

original set and its Merkle commitment C.,,;.The formalized
relation for SNARK proofs is as follows:

R ={(x = (Croot, ¥,), w = (M, LT c)) |
Merkle.Construct(M) = Croot A
Uy =o([I') A y=f(MI)}

This approach results in a more efficient cost of O(n), which
remains independent of the number of elements that need to
be opened. The permutation argument eliminates the need
for individual path verifications, reducing the computational
overhead and making the protocol more efficient for large
datasets.

C. Encoding Elliptic Curve Points for Permutation

To minimize computational overhead, we adopt a method
inspired by Bayer and Groth [14] and the permutation ar-
gument proposed in PLONK [15]. This method verifies the
permutation by compressing each point on the elliptic curve.

To verify that two sets of points on the elliptic curve,
are permutations of each other, we first compress each
point. Specifically, for P = (po,p1,...,Pn-1) and P’ =
(6, P4, - - D)_1), where each p; = (z;,y;) € E(F,) and
p, = («},y;) € E(F,) is a point on the elliptic curve. Let
Isb(y) denotes the Least Significant Bit (LSB) of y. The
compressed representation of each point thus consists of x
and [sb(y).

Treating P’ as a shuffled version of P, we introduce two
challenge values, v and ¢, to define two polynomials based on
the compressed representations. The construction proceeds as
follows:

1) For the set P, the product is computed as:

n—1

g =[] @i+~-1sb(y:) + <)
=0

2) For the set P’, the product is computed as:

n—1

h=] @+~ 1sbyh) +).
1=0

The sets P and P’ are considered permutations of each
other if the following equality holds:

g=nh.

Theorem 1. Any point p = (x,y) on an elliptic curve E(F,),
where E is defined by the equation y? = 3 4 ax + b, can be
uniquely determined by x and the least significant bit [sb(y).

Proof. Consider the elliptic curve E(F,) defined by the equa-
tion:
yv? =23+ ax +0b,

For a given = € [, the right-hand side 2> +az +b uniquely
determines y2. The equation y? = 3 + ax + b has at most

two solutions y; and y_, corresponding to the positive and
negative square roots of y2. These two solutions satisfy:

yr =vVa3+ar+b mod g,
Yy = —vVaz2+ar+b mod gq.

Due to modular arithmetic in Iy, we have y_ = g — y.
Thus, y4+ +y_ = q. Since q is a large prime and therefore odd,
the two solutions y4 and y_ must have opposite parities: One
of y4 ory_ is even (Isb(y) = 0), the other is odd (Isb(y) = 1).

Given Isb(y), we can unambiguously determine whether
the solution is y4 or y_. Thus, = determines y?, and [sb(y)
resolves the ambiguity between the two possible values of y.
Therefore, the point p = (x, y) on the elliptic curve is uniquely
determined by z and Isb(y). O

Theorem 2. Let P = (po,p1,...,pn—1) and P’ =
(PG, PL,-- -, D,_1) be two sets of points on an elliptic curve
E(F,), where p; = (x;,y;) and p, = (z},y;). Randomly
choose two challenge values v, € F. If

n—1 n—1
[T @i+ tsb(y) +¢) = [] (@i + - Isb(y) +€),
1=0 =0

then the probability that P = P’ is at least 1 — %, which is
overwhelming.

Proof. By Schwartz-Zippel, the following equality of polyno-
mials holds in F[X,Y]:

n—1 n—1
[[Fxy) =] Gix.v),
=0 =0

where the factors F;(X,Y") and G;(X,Y) are defined as:
Gi(X,Y)=ua, +Isb(y}) - X + Y,

where i € [n] Since F[X, Y] is a unique factorization domain,
every irreducible factor on the left-hand side must map to
an irreducible factor on the right-hand side. Therefore, there
exists a one-to-one mapping ¢, defined as:

¢ : {Fo, .. -aFn—l} — {Go, . ,Gn—l}a

such that:
Fi(X)Y) =c ¢(F)(X,)Y),

for some ¢ € F*.

Next, we note that the coefficient of Y in both F;(X,Y)
and G;(X,Y) is 1, and the equality of the products implies
¢ =1 for all i. Hence, the mapping satisfies:

F(X.Y) = G;(X.Y),
where ¢(F;) = G;, i,j € [n]. Expanding this equality gives:
xi +1sb(y;) - X +Y = ol +1sb(y)) - X + V.

By comparing coefficients of X and Y, we conclude:

xy =, 1sb(y;) = lsb(y)).

Thus, p; = p;-, and since the mapping ¢ is one-to-one, the
sets P and P’ are identical. O

Encoding scheme. Building on the above, in our zero-
knowledge proof, we extend the idea by defining three poly-
nomials over the compressed representations of the sets My,
My and M, where the union of My and My is supposed to
be M. Let h, g, and m represent the products computed from
these sets, respectively. We compute:

h= I @+~-1sb(y)+0),
V(z,y) €My

9= [@+~ isb(y)+Q),
V(xz,y)EMy/

m= H (x 4+ - Isb(y) +).
V(z,y)EM

To verify the permutation, we check the equality:
h-g=m.

This approach allows us to efficiently verify that the sets My
and My together form a valid permutation of the original set
M.

IV. APPLICATIONS
A. Trustless Cross-Chain Bridge

A trustless cross-chain bridge [16] is an essential infrastruc-
ture in the interaction between different blockchain networks.
These bridges allow for secure and seamless asset and infor-
mation transfers across various blockchains, which is crucial
for the interoperability of the blockchain ecosystem. Recently,
many trustless cross-chain bridges are built upon SNARK-
based infrastructures, owing to their succinct proof sizes and
fast verification times, while eliminating the need to trust any
third party.

In many PoS [17] blockchains, the light client [1] validates
the validity of a block header by verifying signatures (for
example, Ethereum 2.0 [5] confirms the block header via the
sync committee’s signatures), thus eliminating the need to
retrieve the complete transaction data. A trustless cross-chain
bridge mimics this light client verification process by encap-
sulating it into a SNARK proof, enabling efficient and secure
cross-chain validation. Furthermore, to ensure the validity of
signatures, a minimum threshold of valid signatures must be
reached and the authenticity of signers must be guaranteed;
consequently, in the context of SNARK-based verification, a
substantial number of public keys may need to be revealed.

In this scenario, our approach can be utilized in the cross-

chain process for proving the validity of threshold multisigna-
tures.
Threshold Multisignatures. Threshold multisignatures [18]
allow a group of signers to collectively produce a single
signature that remains valid only if at least a predefined thresh-
old number of participants have signed. This cryptographic
primitive is widely used in blockchain applications to enhance
security and scalability.

For instance, BLS signatures [3] are employed in Ethereum
2.0 [5] and the Cosmos ecosystem [6] to facilitate efficient and
compact validation of aggregated signatures. In the Cardano
blockchain [7], Mithril [19] serves as a signature scheme
to generate chain-linked cryptographic certificates, enabling
lightweight and efficient state verification.

In our protocol, the generic function can accommodate these
types of signature schemes, allowing flexible integration with
different threshold multisignature mechanisms for secure and
trustless cross-chain verification.

Threshold multisignatures require selecting an appropriate
scheme based on the predefined threshold, as different schemes
offer varying trade-offs in terms of efficiency, security, and
signature aggregation. When the number of public keys that
need to be revealed is large, the computational and storage
overhead can become a significant bottleneck. Our approach
provides a substantial advantage in such scenarios by signifi-
cantly improving the efficiency of batch proving public keys
within a SNARK proof. This optimization reduces the proving
time, making it particularly suitable for applications where
large-scale threshold multisignatures need to be validated in a
trustless and efficient manner.

In another extreme case, where only a small subset of
public keys is exempt from signing, an alternative relation
can be utilized. This approach was proposed in [20], enabling
a more efficient verification process by leveraging a different
formulation of the proof. In this scenario, our generic function
can be instantiated as a public key aggregation function, which
optimally handles the verification of the signed subset while
maintaining security guarantees. The formal representation of
this relation is given as follows:

R ={(z = (Croot, AVE N, AVK], fagq),
w= (Mp,T',Py)) |
AVE s = fagg(Mp[JAVED), [My]|+ 1)
AVi" € T, Merkle.Verify(m;, Py) = 1}.

Here AV K); and AV K represent two aggregated public
keys, where AV K, represents the aggregated verification
key for all potential signers, and AV K7 is the aggregation
of the keys from actual signers. The function f,4, serves as
the public key aggregation function, which combines multiple
public keys into a single representative key. Each element in
M corresponds to an individual public key.

This relation establishes that the union of the signing public
keys and the non-signing public keys forms the complete set
of public keys. Additionally, it ensures that the non-signing
public keys are valid, thereby guaranteeing the validity of the
remaining signing public keys.

We will later discuss its performance in the Evaluation
section.

V. EVALUATION

In this section, we evaluate the performance of our proposed
method by discussing the experimental setup, metrics used,

results obtained, and a detailed discussion of the findings. The
experiments were conducted on a Ubuntu 20.04.6 LTS server.
Our SNARK implementation utilizes the halo2 framework.

A. SNARK-based Merkle Tree Proof vs. Strawman Merkle Tree
Proof

We first compare the proof of SNARK-based Merkle tree
construction with the proof of strawman Merkle Tree construc-
tion. In our implementation, we employ a zk-friendly 256-bit
Poseidon hash [21] as the underlying hashing component for
constructing the Merkle Tree. We conducted experiments with
tree depths ranging from 4 to 12 (satisfying the requirements
for cross-chain multisignature verification), as shown in Fig-
ure 1.

Verification Time (s)
!
Proof Size (bytes)

T T T U T T T T U T
4 6 8 10 12 4 6 8 10 12
Tree Depths Tree Depths

~@- Strawman Merkle Tree Proof SNARK-based Merkle Tree Proof

Fig. 1. Performance comparison of SNARK-based Merkle Tree construction
proof versus strawman Merkle Tree proof across tree depths from 4 to 12.
Using 256-bit Poseidon hash

The communication overhead and verification time of the
strawman Merkle Tree proof are significantly higher than those
of the SNARK-based proof. Specifically, verification time is
at least 20x slower, and the gap widens with increasing tree
depth, making the SNARK-based approach more suitable for
on-chain scenarios with limited computational resources.

B. SNARK-based Merkle Tree Proof from Permutation Argu-
ment vs. SNARK-based Merkle Tree Proof

Next, we compare the SNARK-based Merkle Tree proof
method with the SNARK-based Merkle Tree proof from
permutation argument method. In both approaches, we employ
a 256-bit Poseidon hash as the underlying hash component for
constructing the Merkle Tree. The proportion of opened leaf
nodes is fixed at 0.75. Experiments were conducted using tree
depths ranging from 4 to 12, as illustrated in Figure 2.

With increasing tree depth, differences in proof time, proof
size, and verification time become more pronounced. Within
the PLONK-based halo2 [22] architecture, the impact of
permutation is very small, adding only 1.08s to the overall
cost, with the hash function dominating the expense. When the
tree depth is below 6, both approaches perform comparably.
However, at a tree depth of 9 (|[M| = 512), the SNARK-
based Merkle Tree proof from permutation argument method
requires only 18.27s compared to 63.98s for the SNARK-based
Merkle Tree Proof approach—a 3.5x improvement. As tree
depth increases further, the performance advantage becomes
even more significant.

C. Comparison on Three Different Hash Functions

We also compared the performance of different hash func-
tions under varying open ratios. We tested the performance
of the SNARK-based Merkle Tree proof from permutation
argument and SNARK-based Merkle Tree Proof methods at
open ratios increasing by 0.125 with the tree depth fixed at
9. The experiments employed three hash functions: Poseidon
[21], Rescue [23], and Kaccak [24]. The test results are shown
in Figure 3.

It can be observed that when the open ratio is at least 0.20,
our method consistently achieves shorter proof generation
times than the Merkle Proof method across all tested hash
functions. Moreover, as the open ratio increases, the perfor-
mance gap becomes more pronounced. At an open ratio of
0.75, our method outperforms the SNARK-based Merkle Tree
Proof method by approximately 3.5x, 7.1x, and 5.3x when
using the Poseidon [21], Rescue [23], and Kaccak [24] hash
functions, respectively. Notably, more complex hash functions
yield greater performance improvements. Additionally, if the
complexity of the Merkle leaf information increases, the
performance of our method tends to decrease at lower open
ratios, whereas its advantages become even more evident at
higher open ratios.

D. SNARK-based Merkle Tree Proof from Complement

In Section IV Applications, where we instantiate a mul-
tisignature scenario, we discussed that when the vast majority
of public keys participate in the signature, verification can
be performed using the Merkle proof of the non-signing
public keys. To explore the crossover point between our
proposed scheme and the SNARK-based Merkle Tree proof
from complement method, we conducted tests with a fixed
tree depth of 9 and a 256-bit hash function. The experiments
varied the open ratio from % to g—; in increments of The
test results are presented in Figure 4.

It can be observed that when the open ratio is less than or
equal to about 0.83, the proof generation time for SNARK-
based Merkle Tree proof from permutation argument method is
superior to that of the SNARK-based Merkle Tree proof from
complement method. Conversely, the SNARK-based Merkle
Tree proof from complement method performs better.

Overall, the SNARK-based Merkle Tree proof from permu-
tation argument method achieves the best performance in the
intermediate region, allowing for a flexible choice of scheme
based on the multisignature threshold.

1
32"

E. Cost Analysis

Based on the experimental results presented above, we fur-
ther perform an algorithmic analysis to evaluate the overhead
of each approach, thereby facilitating the exploration of the
optimal scheme for different multisignature scenarios.

Cost of SNARK-based Merkle Tree Proof. Verifying the
inclusion of a single element requires computing the hash
of the leaf node and performing an additional logn hash
computations to traverse from the leaf to the root, where
logn represents the depth of the tree. Let [be the cost of

= 10° 5 ot i
4 i Pl
7 - Er of
2 10 T = = i g £
E = 5 0'd : A
[g - =
8 - L'mS P % ‘Ir
= ” S = o -2 | -
L /'/ = o = 10] /,r
1] = . - v
10 w 10° F=izpree” I —
i # i =4
T T T T T T T T T T T T T T T
4 6 8 10 12 4 6 8 10 12 4 o 8 10 12
Tree Depths Tree Depths Tree Depths

SNARK-based Merkle Tree Proof from Permutation Argument

—M - SNARK-based Merkle Tree Proof

Fig. 2. Comparison of the SNARK-based Merkle Tree proof method and the SNARK-based Merkle Tree proof from permutation argument method using a
256-bit Poseidon hash, with a fixed 0.75 of leaf nodes opened. Results are shown for tree depths ranging from 4 to 12.

,,,,, ==#-| === SNARK-based Merkle Tree Proof (Kaccak)
Proan SNARK-based Merkle Tree Proof (Poseidon)
prig SNARK-based Merkle Tree Proof (Rescue)
- —=— SNARK-based Merkle Tree Proof from Permutation Argument (Kaccak)
s SNARK-based Merkle Tree Proof from Permutation Argument (Poseidon)
SNARK-based Merkle Tree Proof from Permutation Argument (Rescue)

Proof Time (5)

02 04 06 08 10
Open Ratios

Fig. 3. Performance comparison of SNARK-based Merkle Tree proof from
permutation argument and SNARK-based Merkle Tree Proof methods using
Poseidon [21], Rescue [23], and Kaccak [24] hash functions across varying
open ratios (incremented by 0.125) with a fixed tree depth of 9.

2.0

S — == SNARK-based Merkle Tree Proof from Complement
2.5 1 s Ly SNARK-based Merkle Tree Proof from Permutation Argument
0.0 7 ™
& 175 4
2 S
£ 15.0 \“
125 EX
10.0 4 .

751 i
T T T T T
0.75 0.80 0.85 0.90 095
Aggregation Ratios

Fig. 4. Comparison between our proposed scheme and the SNARK-based
Merkle Tree proof from complement method in a multisignature scenario.
Experiments were conducted with a fixed tree depth of 9 using a 256-bit
hash, with the open ratio varying from % to % in increments of 3%

hashing the raw data to the first-level hash. [may vary across
different scenarios, with [= 1 in our case, assuming | < n.
Thus, verifying a single Merkle proof involves (I + logn)
hash computations. For k selected leaves, the total verification
cost amounts to (k- ! + k - logn) hash computations. This
complexity scales with both the number of selected leaves k
and the dataset size n; specifically, when k = ©(n), the overall
cost becomes O(n logn).

Cost of SNARK-based Merkle Tree proof from permu-
tation argument. In contrast, our protocol that leverages a
Merkle tree combined with a permutation argument avoids
the dependency on the number of selected leaves k. The
overall cost includes constructing the Merkle tree for the
entire dataset and verifying the permutation. Constructing

a Merkle tree for a dataset of n elements requires (n -)
hashes for computing the leaf nodes and an additional (n— 1)
hashes for building the internal nodes, resulting in a total of
(n-14n — 1) hash computations. The permutation argument
then ensures that the selected and unselected leaves together
form a valid permutation of the original dataset, which is veri-
fied through polynomial evaluations and multiplications. Since
this permutation verification operates directly on the dataset,
its complexity is linear with respect to n. Consequently, the
total cost of this protocol is O(n), making it independent of
the number of elements that need to be opened.

Cost of SNARK-based Merkle Tree Proof from Com-
plement. When a significant portion of the dataset needs
to be used, the sum of all valid elements is provided, and
the unused elements are subtracted, with their validity ver-
ified concurrently. The computational cost for verifying the
SNARK-based Merkle Tree proof from complement involves
generating signatures for the valid elements and performing
hash verifications for the unused elements. This approach sig-
nificantly reduces the overall verification cost, as the overhead
becomes proportional to (n — k) - (I + logn), where k is the
number of elements used. As k approaches n, the overhead
decreases, leading to a more efficient verification process.

Comparative Analysis. The relative efficiency of the four
methods depends on the relationship between k£ and n. When
k < l(ﬁ;g)z, the SNARK Merkle Proof verification is more
efficient. Therefore, for smaller values of k, the traditional
Merkle Proof verification method is preferable, as its com-

plexity is dominated by O(klogn). When z(j-Jlr;g)Z <k <

%, the SNARK-based Merkle Tree proof from permu-
tation argument method becomes more efficient. In this range,
the overhead of constructing the Merkle tree and verifying the
permutation with linear complexity O(n) is more favorable
than the growing cost of verifying multiple Merkle Proofs.
Finally, when k£ > %, the SNARK-based Merkle Tree
proof from complement method becomes the most efficient.
In summary, the optimal method can be selected based on
the actual proportion of elements that need to be opened;
however, our proposed SNARK-based Merkle Tree proof from

permutation argument method is superior in most practical

scenarios.

VI. CONCLUSION

In this paper, we have introduced an efficient batch opening
scheme for Merkle tree commitments, specifically tailored
for cross-chain applications. By combining Merkle tree con-
struction from permutation arguments, our approach enables
the verification of a large number of leaves while achieving
significant improvements in proof generation speed. Notably,
the efficiency of our method remains consistent regardless
of the specific number of opened leaves, offering a scalable
solution for large-scale verification tasks.

Our comprehensive evaluation demonstrates that the pro-
posed scheme achieves a threefold performance advantage
in scenarios where the Merkle tree depth reaches 9 and the
opening ratio exceeds two-thirds. These findings underscore
the potential of our approach to significantly enhance the
scalability and efficiency of light clients operating in trustless
cross-chain environments.

Looking ahead, future work could explore further optimiza-
tions to the batch verification process, as well as extensions
of our approach to other cryptographic primitives within
blockchain systems. Additionally, integrating our scheme with
emerging consensus protocols could yield even greater im-
provements in performance and security, ultimately contribut-
ing to the development of more robust and interoperable cross-
chain solutions.

VII. ACKNOWLEDGMENT

This work is supported by the National Natural Science
Foundation of China (Grant No. 62232002). This project is
supported by Input Output (iohk.i0).

Wuyunsiqin is the corresponding author.

REFERENCES

[1]1 P. Chatzigiannis, F. Baldimtsi, and K. Chalkias, “Sok: Blockchain light
clients,” in International Conference on Financial Cryptography and
Data Security. Springer, 2022, pp. 615-641.

[2] C. Schnorr, “Efficient identification and signatures for smart cards,” in
CRYPTO, ser. Lecture Notes in Computer Science, vol. 435. Springer,
1989, pp. 239-252.

[3] D. Boneh, B. Lynn, and H. Shacham, “Short signatures from the weil
pairing,” in International conference on the theory and application of
cryptology and information security. Springer, 2001, pp. 514-532.

[4] T. Ristenpart and S. Yilek, “The power of proofs-of-possession: Se-
curing multiparty signatures against rogue-key attacks,” in Advances in
Cryptology-EUROCRYPT 2007: 26th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Barcelona,
Spain, May 20-24, 2007. Proceedings 26. Springer, 2007, pp. 228-245.

[5] Eth2Book, “Altair: Part 2 - building blocks - signatures,” 2023. [Online].
Available: https://eth2book.info/altair/part2/buildingblocks/signatures/

[6] “Cosmos,” https://cosmos.network/, accessed: 2025-3-12.

[7] “Cardano,” https://www.cardano.org/, accessed: 2025-3-12.

[8] S. Deng and B. Du, “zktree: A zero-knowledge recursion tree with zkp
membership proofs,” Cryptology ePrint Archive, 2023.

[9] S. Srinivasan, A. Chepurnoy, C. Papamanthou, A. Tomescu, and

Y. Zhang, “Hyperproofs: Aggregating and maintaining proofs in vector

commitments,” in 3/st USENIX Security Symposium (USENIX Security

22), 2022, pp. 3001-3018.

C. Papamanthou, S. Srinivasan, N. Gailly, I. Hishon-Rezaizadeh,

A. Salumets, and S. Golemac, “Reckle trees: Updatable merkle batch

proofs with applications,” in Proceedings of the 2024 on ACM SIGSAC

Conference on Computer and Communications Security, 2024, pp.

1538-1551.

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

(19]

[20]

(21]

[22]
[23]

[24]

J. Groth, “On the size of pairing-based non-interactive arguments,”
in Advances in Cryptology—EUROCRYPT 2016: 35th Annual Interna-
tional Conference on the Theory and Applications of Cryptographic
Techniques, Vienna, Austria, May 8-12, 2016, Proceedings, Part Il 35.
Springer, 2016, pp. 305-326.

R. C. Merkle, “A certified digital signature,” in Conference on the Theory
and Application of Cryptology. Springer, 1989, pp. 218-238.

A. Kate, G. M. Zaverucha, and I. Goldberg, “Constant-size commitments
to polynomials and their applications,” in ASIACRYPT, ser. Lecture
Notes in Computer Science, vol. 6477. Springer, 2010, pp. 177-194.
S. Bayer and J. Groth, “Efficient zero-knowledge argument for cor-
rectness of a shuffle,” in Advances in Cryptology—EUROCRYPT 2012:
31st Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Cambridge, UK, April 15-19, 2012. Pro-
ceedings 31. Springer, 2012, pp. 263-280.

A. Gabizon, Z. J. Williamson, and O. Ciobotaru, “Plonk: Permutations
over lagrange-bases for oecumenical noninteractive arguments of knowl-
edge,” Cryptology ePrint Archive, 2019.

S. Lee, A. Murashkin, M. Derka, and J. Gorzny, “Sok: Not quite water
under the bridge: Review of cross-chain bridge hacks,” in ICBC. IEEE,
2023, pp. 1-14.

A. Kiayias, A. Russell, B. David, and R. Oliynykov, “Ouroboros: A
provably secure proof-of-stake blockchain protocol,” in CRYPTO (1),
ser. Lecture Notes in Computer Science, vol. 10401. Springer, 2017,
pp. 357-388.

P. Gazi, A. Kiayias, and D. Zindros, “Proof-of-stake sidechains,” in [EEE
Symposium on Security and Privacy. 1EEE, 2019, pp. 139-156.

P. Chaidos and A. Kiayias, “Mithril: Stake-based threshold multisig-
natures,” in Cryptology and Network Security - 23rd International
Conference, CANS 2024, Cambridge, UK, September 24-27, 2024, Pro-
ceedings, Part I, ser. Lecture Notes in Computer Science, M. Kohlweiss,
R. D. Pietro, and A. R. Beresford, Eds., vol. 14905. Springer, 2024,
pp. 239-263.

P. Gazi, A. Kiayias, and D. Zindros, “Proof-of-stake sidechains,” in 20719
IEEE Symposium on Security and Privacy (SP). 1EEE, 2019, pp. 139—
156.

L. Grassi, D. Khovratovich, C. Rechberger, A. Roy, and M. Schofnegger,
“Poseidon: A new hash function for zero-knowledge proof systems,” in
USENIX Security Symposium. USENIX Association, 2021, pp. 519—
535s.

Zcash, “Halo2,” https://github.com/zcash/halo2, accessed: 2025-3-12.
A. Aly, T. Ashur, E. Ben-Sasson, S. Dhooghe, and A. Szepieniec, “De-
sign of symmetric-key primitives for advanced cryptographic protocols,”
IACR Trans. Symmetric Cryptol., vol. 2020, no. 3, pp. 1-45, 2020.

G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche, “The Keccak
Reference.” Keccak Team, 2011, accessed: 2025-03-12. [Online].
Available: https://keccak.team/files/Keccak-reference-3.0.pdf

https:// eth2book.info/altair/part2/building blocks/signatures/
https://cosmos.network/
https://www.cardano.org/
https://github.com/zcash/halo2
https://keccak.team/files/Keccak-reference-3.0.pdf

	Introduction
	Our Contribution
	Applications
	Evaluation
	Related work

	Preliminary
	Notation
	Succinct Non-Interactive Arguments of Knowledge
	Merkle Trees
	Polynomial Commitment
	Elliptic Curves

	Merkle commitment with selective opening
	Definitions
	Methods of Merkle Commitment Opening
	Encoding Elliptic Curve Points for Permutation

	Applications
	Trustless Cross-Chain Bridge

	Evaluation
	SNARK-based Merkle Tree Proof vs. Strawman Merkle Tree Proof
	SNARK-based Merkle Tree Proof from Permutation Argument vs. SNARK-based Merkle Tree Proof
	Comparison on Three Different Hash Functions
	SNARK-based Merkle Tree Proof from Complement
	Cost Analysis

	Conclusion
	Acknowledgment
	References

