The Extended UTXO Model

Manuel M.T. Chakravarty!, James Chapman', Kenneth MacKenzie!, Orestis
Melkonian'-2, Michael Peyton Jones', and Philip Wadler?

! TOHK, {manuel.chakravarty, james.chapman, kenneth.mackenzie,
orestis.melkonian, michael.peyton-jones}@iohk.io
2 University of Edinburgh, orestis.melkonian@ed.ac.uk, wadler@inf.ed.ac.uk

Abstract. Bitcoin and Ethereum, hosting the two currently most valu-
able and popular cryptocurrencies, use two rather different ledger models,
known as the UTXO model and the account model, respectively. At the
same time, these two public blockchains differ strongly in the expressive-
ness of the smart contracts that they support. This is no coincidence.
FEthereum chose the account model explicitly to facilitate more expres-
sive smart contracts. On the other hand, Bitcoin chose UTXO also for
good reasons, including that its semantic model stays simple in a com-
plex concurrent and distributed computing environment. This raises the
question of whether it is possible to have expressive smart contracts,
while keeping the semantic simplicity of the UTXO model.

In this paper, we answer this question affirmatively. We present Fxtended
UTXO (EUTXO), an extension to Bitcoin’s UTXO model that sup-
ports a substantially more expressive form of validation scripts, includ-
ing scripts that implement general state machines and enforce invariants
across entire transaction chains.

To demonstrate the power of this model, we also introduce a form of state
machines suitable for execution on a ledger, based on Mealy machines
and called Constraint Emitting Machines (CEM). We formalise CEMs,
show how to compile them to EUTXO, and show a weak bisimulation
between the two systems. All of our work is formalised using the Agda
proof assistant.

Keywords: blockchain - UTXO - functional programming - state machines.

1 Introduction

Bitcoin, the most widely known and most valuable cryptocurrency, uses a graph-
based ledger model built on the concept of UTXOs (unspent transaction out-
puts) [2,17]. Individual transactions consist of a list of inputs and a list of outputs,
where outputs represent a specific value (of a cryptocurrency) that is available
to be spent by inputs of subsequent transactions. Each output can be spent by
(i.e., connect to) exactly one input. Moreover, we don’t admit cycles in these
connections, and hence we can regard a collection of transactions spending from
each other as a directed acyclic graph, where a transaction with m inputs and n

2 Chakravarty et al.

outputs is represented by a node in the graph with m edges in and n edges out.
The sum of the values consumed by a transaction’s inputs must equal the sum
of the values provided by its outputs, thus value is conserved.

Whether an output can be consumed by an input is determined by a function
v attached to the output, which we call the output’s validator. A transaction
input proves its eligibility to spent an output by providing a redeemer object p,
such that v(p) = true; redeemers are often called witnesses in Bitcoin. In the
simplest case, the redeemer is a cryptographic hash of the spending transaction
signed by an authorised spender’s private key, which is checked by the validator,
which embeds the corresponding public key. More sophisticated protocols are
possible by using more complex validator functions and redeemers — see [3] for
a high-level model of what is possible with the functionality provided by Bitcoin.

The benefit of this graph-based approach to a cryptocurrency ledger is that
it plays well with the concurrent and distributed nature of blockchains. In par-
ticular, it forgoes any notion of shared mutable state, which is known to lead to
highly complex semantics in the face of concurrent and distributed computations
involving that shared mutable state.

Nevertheless, the UTXO model, generally, and Bitcoin, specifically, has been
criticised for the limited expressiveness of programmability achieved by the val-
idator concept. In particular, Ethereum’s account-based ledger and the associated
notion of contract accounts has been motivated by the desire to overcome those
limitations. Unfortunately, it does so by introducing a notion of shared mutable
state, which significantly complicates the semantics of contract code. In par-
ticular, contract authors need to understand the subtleties of this semantics or
risk introducing security issues (such as the vulnerability to recursive contract
invocations that led to the infamous DAO attack [5]).

Contributions. The contribution of the present paper is to propose an extension
to the basic UTXO ledger model, which (a) provably increases expressiveness,
while simultaneously (b) preserving the dataflow properties of the UTXO graph;
in particular, it forgoes introducing any notion of shared mutable state. More
specifically, we make the following contributions:

— We propose the EUTXO model, informally in Section 2 and formally in
Section 3.

— We demonstrate that the EUTXO model supports the implementation of a
specific form of state machines (Constraint Emitting Machines, or CEMs),
which the basic UTXO model does not support, in Section 4.

— We provide formalisations of both the EUTXO model and Constraint Emit-
ting Machines. We prove a weak bisimulation between the two using the
Agda proof assistant®, building on previous work by Melkonian et al. [11].

Section 5 summarises related work.
The EUTXO model will be used in the ledger of Cardano, a major blockchain
system currently being developed by IOHK. It also provides the foundation of

3 https://github.com/omelkonian /formal-utxo/tree/al574e6

https://github.com/omelkonian/formal-utxo/tree/a1574e6

The Extended UTXO Model 3

Cardano’s smart contract platform Plutus®, which includes a small functional
programming language Plutus Core which is used to implement Scripts. Although
a technical description of Cardano itself is beyond the scope of this paper, one
can try out the Plutus Platform in an online playground.®

Other future work includes a formal comparison of EUTXO with Ethereum’s
account-based model.

2 Extending UTXO

Various forms of state machines have been proposed to characterise smart con-
tract functionality that goes beyond what is possible with the basic UTXO model
— see, for example, [8,16] using Ethereum’s account-based model. However, we
might wonder whether we can extend the basic UTXO model in such a way as to
support more expressive state machines without switching to an account-based
model.

Given that we can regard the individual transactions in a continuous chain of
transactions as individual steps in the evolution of a state machine, we require
two pieces of additional functionality from the UTXO model: (a) we need to be
able to maintain the machine state, and (b) we need to be able to enforce that
the same contract code is used along the entire sequence of transactions — we
call this contract continuity.

To maintain the machine state, we extend UTXO outputs from being a pair
of a validator v and a cryptocurrency value value to being a triple (v, value,)
of validator, value, and a datum §, where § contains arbitrary contract-specific
data. Furthermore, to enable validators to enforce contract continuity, we pass
the entirety of the transaction that attempts to spend the output locked by a
validator to the validator invocation. Thus a validator can inspect the transaction
that attempts to spend its output and, in particular, it can ensure that the
contract output of that transaction uses validator code belonging to the same
contract — often, this will be the same validator. Overall, to check that an input
with redeemer p that is part of the transaction ¢z is entitled to spend an output
(v, value, §), we check that v(value, d, p, tx) = true.

As we are allowing arbitrary data in 6 and we enable the validator v to im-
pose arbitrary validity constraints on the consuming transaction ¢z, the resulting
Extended UTXO (EUTXO) model goes beyond enabling state machines. How-
ever, in this paper we restrict ourselves to the implementation of state machines
and leave the investigation of further-reaching computational patterns to future
work.

As a simple example of a state machine contract consider an n—of—m multi-
signature contract. Specifically, we have a given amount valueys. of some cryp-
tocurrency and we require the approval of at least n out of an a priori fixed set of
m > n owners to spend valueys.. With plain UTXO (e.g., on Bitcoin), a multi-
signature scheme requires out-of-band (off-chain) communication to collect all

* https://github.com/input-output-hk/plutus
® https://prod.playground.plutus.iohkdev.io/

https://github.com/input-output-hk/plutus
https://prod.playground.plutus.iohkdev.io/

4 Chakravarty et al.

Propose (value, k, d)

Nﬂ}

Collect
Holding (value, k, d) Add sig
Pay e SigSnew = SigSold U {sig}, if Sig € SigSauth

if |sigs| = n

Cancel
if d expired

Fig. 1. Transition diagram for the multi-signature state machine; edges labelled with
input from redeemer and transition constraints.

n signatures to spend valuens.. On Ethereum, and also in the EUTXO model,
we can collect the signatures on-chain, without any out-of-band communication.
To do so, we use a state machine operating according to the transition diagram
in Figure 1, where we assume that the threshold n and authorised signatures

5195 uen With |sigs, .| = m are baked into the contract code.

In its implementation in the EUTXO model, we use a validator function
Vmse accompanied by the datum s to lock valueys.. The datum 4. stores
the machine state, which is of the form Holding when only holding the locked
value or Collecting((value, k, d), sigs) when collecting signatures sigs for a pay-
ment of wvalue to k by the deadline d. The initial output for the contract is
(Vmsc, valuemse, Holding).

The validator vy, implements the state transition diagram from Figure 1
by using the redeemer of the spending input to determine the transition that
needs to be taken. That redeemer (state machine input) can take four forms:
(1) Propose(wvalue, k,d) to propose a payment of value to k by the deadline d,
(2) Add(sig) to add a signature sig to a payment, (3) Cancel to cancel a proposal
after its deadline expired, and (4) Pay to make a payment once all required
signatures have been collected. It then validates that the spending transaction
tz is a valid representation of the newly reached machine state. This implies that
tz needs to keep valuenysc locked by s and that the state in the datum 6/,
needs to be the successor state of d,s. according to the transition diagram.

The increased expressiveness of the EUTXO model goes far beyond sim-
ple contracts such as this on-chain multi-signature contract. For example, the
complete functionality of the Marlowe domain-specific language for financial con-
tracts [15] has been successfully implemented as a state machine on the EUTXO
model.

The Extended UTXO Model 5

3 Formal model

3.1 Basic types and notation

Figure 2 defines some basic types and notation used in the rest of the paper; we
have generally followed the notation established by Zahnentferner in [17].

the type of booleans
the type of natural numbers
the type of integers
(61 :T1,...,¢n : Tn) arecord type with fields ¢1,..., ¢y of types Th,..., Ty
t.¢ the value of ¢ for t, where t has type T and ¢ is a field of T
Set[T] the type of (finite) sets over T
List[T'] the type of lists over T', with _[_] as indexing and |-| as length
h :: t the list with head h and tail ¢
z — f(x) an anonymous function
¢ a cryptographic collision-resistant hash of ¢
Interval[A] the type of intervals over a totally-ordered set A

NZ&

Fig. 2. Basic types and notation

The Data type. We will make particular use of a primitive type Data which
can be used to pass information into scripts. This is intended to be any relatively
standard structured data format, for example JSON or CBOR [6].

The specific choice of type does not matter for this paper, so we have left
it abstract. The intention is that this should be well supported by all the pro-
gramming languages we are interested in, including whatever language is used
for scripts, and whatever languages are used for off-chain code that interacts
with the chain.

We assume that for every (non-function) type T in the scripting language we
have corresponding toData and fromData functions.

3.2 EUTXO: Enhanced scripting

Our first change to the standard UTXO model is that as well as the validator we
allow transaction outputs to carry a piece of data called the datum (or datum
object), which is passed in as an additional argument during validation. This
allows a contract to carry some state (the datum) without changing its “code”
(the validator). We will use this to carry the state of our state machines (see
Section 2).

The second change is that the validator receives some information about the
transaction that is being validated. This information, which we call the context,

6 Chakravarty et al.

is passed in as an additional argument of type Context. The information supplied
in the context enables the validator to enforce much stronger conditions than is
possible with a bare UTXO model — in particular, it can inspect the outputs of
the current transaction, which is essential for ensuring contract continuity (see
Section 2).

The third change is that we provide some access to time by adding a validity
interval to transactions. This is an interval of ticks (see Subsection 3.3) during
which a transaction can be processed (a generalisation of a “time-to-live”). Thus,
any scripts which run during validation can assume that the current tick is within
that interval, but do not know the precise value of the current tick.

Finally, we represent all the arguments to the validator (redeemer, datum,
Context) as values of type Data. Clients are therefore responsible for encoding
whatever types they would like to use into Data (and decoding them inside the
validator script).

3.3 A Formal Description of the EUTXO Model

In this section we give a formal description of the EUTXO model. The description
is given in a straightforward set-theoretic form, which (1) admits an almost
direct translation into languages like Haskell for implementation, and (2) is easily
amenable to mechanical formalisation. We will make use of this in Section 4.

The definitions in this section are essentially the definitions of UTXO-based
cryptocurrencies with scripts from Zahnentferner [17], except that we have made
the changes described above.

Figure 3 lists the types and operations used in the the basic EUTXO model.
Some of these are defined here, the others must be provided by the ledger (“ledger
primitives”).

Addresses. We follow Bitcoin in referring to the targets of transaction outputs
as “addresses”. In this system, they refer only to script addresses (likely a hash
of the script), but in a full system they would likely include public-key addresses,
and so on.

Ticks. A tick is a monotonically increasing unit of progress in the ledger system.
This corresponds to the “block number” or “block height” in most blockchain
systems. We assume that there is some notion of a “current tick” for a given
ledger.

Inputs and outputs. Transactions have a Set of inputs but a List of outputs.
There are two reasons that we do not also have a Set of outputs although they
are conceptually symmetrical:

— We need a way to uniquely identify a transaction output, so that it can be
referred to by a transaction input that spends it. The pair of a transaction id
and an output index is sufficient for this, but other schemes are conceivable.

The Extended UTXO Model 7

LEDGER PRIMITIVES
Quantity an amount of currency
Tick a tick
Address an “address” in the blockchain
Data a type of structured data
DataHash the hash of a value of type Data
Txld the identifier of a transaction
txld : Tx — Txld a function computing the identifier of a transaction
Script the (opaque) type of scripts
scriptAddr : Script — Address the address of a script
dataHash : Data — DataHash the hash of an object of typeData
[] : Script — Data x Data x Data — B applying a script to its arguments

DEFINED TYPES
Output = (value : Quantity,
addr : Address,
datumHash : DataHash)

OutputRef = (id : TxId, indez : N)
Input = (outputRef : OutputRef,
validator : Script,
datum : Data,
redeemer : Data)
Tx = (inputs : Set[Input],

outputs : List[Output],
validityInterval : Interval[Tick])

Ledger = List[Tx]

Fig. 3. Primitives and types for the EUTXO model

— A Set requires a notion of equality. If we use the obvious structural equality
on outputs, then if we had two outputs paying X to address A, they would
be equal. We need to distinguish these — outputs must have an identity
beyond just their address and value.

The location of validators and datum objects. Validator scripts and full datum
objects are provided as parts of transaction inputs, even though they are con-
ceptually part of the output being spent. The output instead specifies them by

providing the corresponding address or hash.’
This strategy reduces memory requirements, since the UTXO set must be
kept in memory for rapid access while validating transactions. Hence it is desir-

5 That these match up is enforced by Rules 7 and 8 in Figure 6.

8 Chakravarty et al.

able to keep outputs small — in our system they are constant size. Providing
the much larger validator script only at the point where it is needed is thus a
helpful saving. The same considerations apply to datum objects.

An important question is how the person who spends an output knows which
validator and datum to provide in order to match the hashes on the output. This
can always be accomplished via some off-chain mechanism, but we may want to
include some on-chain way of accomplishing this.” However, this is not directly
relevant to this paper, so we have omitted it.

Fees, forge, and additional metadata. Transactions will typically have additional
metadata, such as transaction fees or a “forge” field that allows value to be
created or destroyed. These are irrelevant to this paper, so have been omitted.®

Ledger structure. We model a ledger as a simple list of transactions: a real
blockchain ledger will be more complex than this, but the only property that we
really require is that transactions in the ledger have some kind of address which
allows them to be uniquely identified and retrieved.

3.4 The Context type

Recall from the introduction to Section 3.2 that when a transaction input is
being validated, the validator script is supplied with an object of type Context
(encoded as Data) which contains information about the current transaction.
The Context type is defined in Figure 4, along with some related types.

Outputinfo = (value : Quantity,
validatorHash : Address,
datumHash : DataHash)

Inputinfo = (outputRef : OutputRef,
validatorHash : Address,
datum : Data,
redeemer : Data,
value : Quantity)

Context = (inputlnfo : Set[Inputinfo],
outputinfo : List[Outputinfo],
validityInterval : Interval[Tick],
thisInput : N)

Fig. 4. The Context type for the EUTXO model

" Cardano will provide a mechanism in this vein.
8 Adding such fields might require amending Rule 4 to ensure value preservation.

The Extended UTXO Model 9

The contents of Context. The Context type is a summary of the information
contained in the Tx type in Figure 3, situated in the context of a validating
transaction, and made suitable for consumption in a script. That results in the
following changes:

1. The Inputinfo type is augmented with information that comes from the out-
put being spent, specifically the value attached to that output.

2. The Context type includes an index that indicates the input currently being
validated. This allows scripts to identify their own address, for example.

3. Validators are included as their addresses, rather than as scripts. This allows
easy equality comparisons without requiring script languages to be able to
represent their own programs.

We assume that there is a function toContext : Tx X Input x Ledger — Context
which summarises a transaction in the context of an input and a ledger state.

Determinism. The information provided by Context is entirely determined by the
transaction itself. This means that script execution during validation is entirely
deterministic, and can be simulated accurately by the user before submitting
a transaction: thus both the outcome of script execution and the amount of
resources consumed can be determined ahead of time. This is helpful for systems
that charge for script execution, since users can reliably compute how much they
will need to pay ahead of time.

A common way for systems to violate this property is by providing access to
some piece of mutable information, such as the current time (in our system, the
current tick has this role). Scripts can then branch on this information, leading to
non-deterministic behaviour. We sidestep this issue with the validation interval
mechanism (see the introduction to Section 3.2).

lookupTx : Ledger x Txld — Tx
lookupTx(l, id) = the unique transaction in [whose id is id

unspentTxOutputs : Tx — Set[OutputRef]
unspentTxOutputs(t) = {(txld(t),1),..., (txld(id), |t.outputs|)}

unspentOutputs : Ledger — Set[OutputRef]
unspentOutputs([]) = {}
unspentOutputs(t :: I) = (unspentOutputs(l) \ t.inputs) U unspentTxOutputs(t)

getSpentOutput : Input x Ledger — Output
getSpentOutput(i,1) = lookupTx(l, i.outputRef .id).outputs|i.outputRef .index]

Fig. 5. Auxiliary functions for EUTXO validation

10 Chakravarty et al.

3.5 Validity of EUTXO transactions

Figure 6 defines what it means for a transaction ¢ to be valid for a valid ledger
[during the tick currentTick, using some auxiliary functions from Figure 5. Our
definition combines Definitions 6 and 14 from Zahnentferner [17], differing from
the latter in Rule 6.

A ledger [is walid if either [is empty or [is of the form ¢ :: I’ with I’ valid
and t valid for I’.

1. The current tick is within the validity interval
currentTick € t.validityInterval
2. All outputs have non-negative values
For all o € t.outputs, o.value > 0
3. All inputs refer to unspent outputs
{i.outputRef : i € t.inputs} C unspentOutputs(l).
4. Value is preserved

Unless [is empty, Z getSpentOutput(i,). value = Z o.value

i€t inputs o€E€t.outputs
5. No output is double spent
If 41,12 € t.inputs and i1.outputRef = i2.outputRef then i1 = ia.

6. All inputs validate

For all i € t.inputs, [i.validator](i.datum, i.redeemer, toData(toContext(t, ,1))) = true.

7. Validator scripts match output addresses
For all i € t.inputs, scriptAddr(i.validator) = getSpentOutput(s,l).addr
8. Each datum matches its output hash

For all i € t.inputs, dataHash(i.datum) = getSpentOutput(s,l).datumHash

Fig. 6. Validity of a transaction ¢ in the EUTXO model

Creating value. Most blockchain systems have special rules for creating or de-
stroying value. These are usually fairly idiosyncratic, and are not relevant to this
paper, so we have provided a simple genesis condition in Rule 4 which allows
the initial transaction in the ledger to create value.

Lookup failures. The function getSpentOutput calls lookupTx, which looks up
the unique transaction in the ledger with a particular id and can of course fail.

The Extended UTXO Model 11

However Rule 3 ensures that during validation all of the transaction inputs refer
to existing unspent outputs, and in these circumstances lookupTx will always
succeed for the transactions of interest.

4 Expressiveness of EUTXO

In this section, we introduce a class of state machines that can admit a straight-
forward modelling of smart contracts running on an EUTXO ledger. The class
we choose corresponds closely to Mealy machines [9] (deterministic state trans-
ducers). The transition function in a Mealy machine produces a value as well
as a new state. We use this value to model the emission of constraints which
apply to the current transaction in the ledger. We do not claim that this class
captures the full power of the ledger: instead we choose it for its simplicity, which
is sufficient to capture a wide variety of use cases.

We demonstrate how one can represent a smart contracts using Mealy ma-
chines and formalise a weak bisimulation between the machine model and the
ledger model. Furthermore, we have mechanised our results in Agda’, based on
an executable specification of the model described in Section 3.

4.1 Constraint Emitting Machines

We introduce Constraint Emitting Machines (CEM) which are based on Mealy
machines. A CEM consists of its type of states S and inputs |, a predicate function
final : S — Bool indicating which states are final and a valid set of transitions,
given as a function step : S — | — Maybe (S x TxConstraints)'" from source state

and input symbol to target state and constraints and denoted s SN (s, tz=).
The class of state machines we are concerned with here diverge from the
typical textbook description of Mealy Machines in the following aspects:

— The set of states can be infinite.

— There is no notion of initial state, since we would not be able to enforce it
on the blockchain level. Therefore, each contract should first establish some
initial trust to bootstrap the process. One possible avenue for overcoming
this limitation is to build a notion of trace simulation on top of the current
relation between single states, thus guaranteeing that only valid sequences
starting from initial states appear on the ledger. For instance, this could be
used to establish inductive properties of a state machine and carry them over
to the ledger; we plan to investigate such concerns in future work.

— While final states traditionally indicate that the machine may halt at a
given point, allowing this possibility would cause potentially stale states to
clutter the UTXO set in the ledger. Thus, a CEM final state indicates that
the machine must halt. It will have no continuing transitions from this point
onward and the final state will not appear in the UTXO set. This corresponds
to the notion of a stopped process [14] which cannot make any transitions.

9 https://github.com/omelkonian /formal-utxo/tree/al574e6 /Bisimulation.agda
10 The result may be Nothing, in case no valid transitions exist from a given state/input.

 https://github.com/omelkonian/formal-utxo/tree/a1574e6/Bisimulation.agda

12 Chakravarty et al.

— The set of output values is fixed to constraints which impose a certain struc-
ture on the transaction that will implement the transition. Our current for-
malisation considers a limited set of first-order constraints, but these can
easily be extended without too many changes in the accompanying proofs.

4.2 Transitions-as-transactions

We want to compile a smart contract C defined as a CEM into a smart contract
that runs on the chain. The idea is to derive a validator script from the step
function, using the datum to hold the state of the machine, and the redeemer to
provide the transition signal. A valid transition in a CEM will correspond to a
single valid transaction on the chain. The validator is used to determine whether
a transition is valid and the state machine can advance to the next state. More
specifically, this validator should ensure that we are transitioning to a valid
target state, the corresponding transaction satisfies the emitted constraints and
that there are no outputs in case the target state is final:

true if s — (s',tz%)
and satisfies(txInfo, tx=)
and checkOutputs(s’, tzInfo)
false otherwise

validatore (s, i, tzInfo) =

Note that unlike the step function which returns the new state, the validator only
returns a boolean. On the chain the next state is provided with the transaction
output that “continues” the state machine (if it continues), and the validator
simply validates that the correct next state was provided.'!

4.3 Behavioural Equivalence

We have explained how to compile state machines to smart contracts but how
do we convince ourselves that these smart contracts will behave as intended?
We would like to show (1) that any valid transition in a CEM corresponds to a
valid transaction on the chain, and (2) that any valid transaction on the chain
corresponds to a valid transition. We refer to these two properties as soundness
and completeness below.

‘While state machines correspond to automata, the automata theoretic notion
of equivalence — trace equivalence — is too coarse when we consider state
machines as running processes. Instead we use bisimulation, which was developed
in concurrency theory for exactly this purpose, to capture when processes behave
the same [14]. We consider both the state machine and the ledger itself to be
running processes.

If the state machine was the only user of the ledger then we could consider
so-called strong bisimulation where we expect transitions in one process to cor-
respond to transitions in the other and vice-versa. But, as we expect there to be

11 A user can run the step function locally to determine the correct next state off-chain.

The Extended UTXO Model 13

other unrelated transactions occurring on the ledger we instead consider weak
bisimulation where the ledger is allowed to make additional so-called internal
transitions that are unrelated to the behaviour we are interested in observing.

The bisimulation proof relates steps of the CEM to new transaction submis-
sions on the blockchain. Note that we have a weak bisimulation, since it may be
the case that a ledger step does not correspond to a CEM step.

Definition 1 (Process relation). A CEM state s corresponds to a ledger
whenever s appears in the current UTXO set, locked by the validator derived
from this CEM:

l~s

Definition 2 (Ledger step). Concerning the blockchain transactions, we only
consider valid ledgers.'> Therefore, a valid step in the ledger consists of submit-
ting a new transaction tx, wvalid w.r.t. to the current ledger I, resulting in an
extended ledger I':

[y

Proposition 1 (Soundness). Given a valid CEM transition s — (s',tz=)
and a valid ledger 1 corresponding to source state s, we can construct a valid
transaction submission to get a new, extended ledger I’ that corresponds to target
state s': _

s —— (s/,tx=) l~s

; . , ; /SOUND
Jdtxl! .l —— U Nl ~s

Note. We also require that the omitted constraints are satisfiable in the current
ledger and the target state is not a final one, since there would be no corre-
sponding output in the ledger to witness I’ ~ s’. We could instead augment the
definition of correspondence to account for final states, but we have refrained
from doing so for the sake of simplicity.

Proposition 2 (Completeness). Given a valid ledger transition 1 and
a CEM state s that corresponds to l, either tx is irrelevant to the current CEM
and we show that the extended ledger I’ still corresponds to source state s, or tx

is relevant and we exhibit the corresponding CEM transition s —— (s, tx=)"3:

[N [O

, COMPLETE
. = 1 —
U'~s VvV i ta= . s — (8, t25)

Together, soundness and completeness finally give us weak bisimulation.
Note, however, that our notion of bisimulation differs from the textbook one
(e.g. in Sangiorgi [14]), due to the additional hypotheses that concern our spe-
cial treatment of constraints and final states.

12 Tn our formal development, we enforce validity statically at compile time.
13 We cannot provide a correspondence proof in case the target state is final, as ex-
plained in the previous note.

14 Chakravarty et al.
5 Related work

Bitcoin Covenants [12] allow Bitcoin transactions to restrict how the transferred
value can be used in the future, including propagating themselves to ongoing
outputs. This provides contract continuity and allows the implementation of
simple state machines. Our work is inspired by Covenants, although our addition
of a datum is novel and simplifies the state passing.

The Bitcoin Modelling Language (BitML) [3] is an idealistic process calculus
that specifically targets smart contracts running on Bitcoin. The semantics of
BitML contracts essentially comprise a (labelled) transition system, aka a state
machine. Nonetheless, due to the constrained nature of the plain UTXO model
without any extensions, the construction is far from straightforward and requires
quite a bit of off-chain communication to set everything up. Most importantly,
the BitML compilation scheme only concerns a restricted form of state machines,
while ours deals with a more generic form that admits any user-defined type of
states and inputs. BitML builds upon an abstract model of Bitcoin transactions
by the same authors [2]; one of our main contributions is an extended version of
such an abstract model, which also accounts for the added functionality apparent
in Cardano.

Ethereum and its smart contract language, Solidity [4], are powerful enough
to implement state machines, due to their native support for global contract
instances and state. However, this approach has some major downsides, notably
that contract state is global, and must be kept indefinitely by all core nodes. In
the EUTXO model, contract state is localised to where it is used, and it is the
responsibility of clients to manage it.

Scilla [16] is a intermediate-level language for writing smart contracts as
state machines. It compiles to Solidity and is amendable to formal verification.
Since Scilla supports the asynchronous messaging capabilities of Ethereum, Scilla
contracts correspond to a richer class of automata, called Communicating State
Transition Systems [13]. In the future, we plan to formally compare this class of
state machines with our own class of CEMs, which would also pave the way to
a systematic comparison of Ethereum’s account-based model against Cardano’s
UTXO-based one.

Finally, there has been an attempt to model Bitcoin contracts using timed au-
tomata [1], which enables semi-automatic verification using the UPPAAL model
checker [7]. While this provides a pragmatic way to verify temporal properties
of concrete smart contracts, there is no formal claim that this class of automata
actually corresponds to the semantics of Bitcoin smart contracts. In contrast,
our bisimulation proof achieves the bridging of this semantic gap.

References

1. Andrychowicz, M., Dziembowski, S., Malinowski, D., Mazurek, L.: Modeling bit-
coin contracts by timed automata. In: International Conference on Formal Model-
ing and Analysis of Timed Systems. pp. 7-22. Springer (2014)

10.

11.

12.

13.

14.

15.

16.

17.

The Extended UTXO Model 15

. Atzei, N., Bartoletti, M., Lande, S., Zunino, R.: A formal model of Bitcoin trans-

actions. In: Meiklejohn and Sako [10], pp. 541-560. https://doi.org/10.1007/978-
3-662-58387-6_29, https://doi.org/10.1007/978-3-662-58387-6_29

Bartoletti, M., Zunino, R.: BitML: a calculus for Bitcoin smart contracts. In: Pro-
ceedings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security. pp. 83-100. ACM (2018)

Ethereum Foundation: Solidity documentation. https://solidity.readthedocs.io/
(2016-2019)

Falkon, S.: The story of the DAO — its history and consequences. https://medium.
com/swlh/the-story-of-the-dao-its-history-and-consequences-71le6a8a551ee
(2017), medium.com

IETF: RFC 7049 - Concise Binary Object Representation (CBOR). https://tools.
ietf.org/html/rfc7049 (Oct 2013), accessed: 2020-01-01

Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL in a nutshell. International journal
on software tools for technology transfer 1(1-2), 134-152 (1997)

Mavridou, A., Laszka, A.: Designing secure Ethereum smart contracts: A
finite state machine based approach. In: Meiklejohn and Sako [10], pp.
523-540. https://doi.org/10.1007/978-3-662-58387-6_28, https://doi.org/10.1007/
978-3-662-58387-6_28

Mealy, G.H.: A method for synthesizing sequential circuits. The Bell System Tech-
nical Journal 34(5), 1045-1079 (1955)

Meiklejohn, S., Sako, K. (eds.): Financial Cryptography and Data Security —
22nd International Conference, FC 2018, Nieuwpoort, Curagao, February 26—
March 2, 2018, Revised Selected Papers, Lecture Notes in Computer Science,
vol. 10957. Springer (2018). https://doi.org/10.1007/978-3-662-58387-6, https://
doi.org/10.1007/978-3-662-58387-6

Melkonian, O., Swierstra, W., Chakravarty, M.M.: Formal investigation of the
Extended UTxO model (Extended Abstract). https://omelkonian.github.io/data/
publications/formal-utxo.pdf (2019)

Méoser, M., Eyal, 1., Sirer, E.G.: Bitcoin covenants. In: International Conference on
Financial Cryptography and Data Security. pp. 126-141. Springer (2016)
Nanevski, A., Ley-Wild, R., Sergey, 1., Delbianco, G.A.: Communicating state tran-
sition systems for fine-grained concurrent resources. In: European Symposium on
Programming Languages and Systems. pp. 290-310. Springer (2014)

Sangiorgi, D.: Introduction to Bisimulation and Coinduction. Cambridge Univer-
sity Press (2012)

Seijas, P.L., Thompson, S.J.: Marlowe: Financial contracts on blockchain. In:
Margaria, T., Steffen, B. (eds.) Leveraging Applications of Formal Methods,
Verification and Validation. Industrial Practice — 8th International Sympo-
sium, ISoLA 2018, Limassol, Cyprus, November 5-9, 2018, Proceedings, Part
IV. Lecture Notes in Computer Science, vol. 11247, pp. 356-375. Springer
(2018). https://doi.org/10.1007/978-3-030-03427-6_27, https://doi.org/10.1007/
978-3-030-03427-6_27

Sergey, 1., Nagaraj, V., Johannsen, J., Kumar, A., Trunov, A., Hao, K.C.G.: Safer
smart contract programming with Scilla. Proceedings of the ACM on Programming
Languages 3(OOPSLA), 185 (2019)

Zahnentferner, J.: An abstract model of UTxO-based cryptocurrencies with scripts.
TACR Cryptology ePrint Archive 2018, 469 (2018), https://eprint.iacr.org/2018/
469

https://doi.org/10.1007/978-3-662-58387-6_29
https://doi.org/10.1007/978-3-662-58387-6_29
https://doi.org/10.1007/978-3-662-58387-6_29
https://solidity.readthedocs.io/
https://medium.com/swlh/the-story-of-the-dao-its-history-and-consequences-71e6a8a551ee
https://medium.com/swlh/the-story-of-the-dao-its-history-and-consequences-71e6a8a551ee
https://tools.ietf.org/html/rfc7049
https://tools.ietf.org/html/rfc7049
https://doi.org/10.1007/978-3-662-58387-6_28
https://doi.org/10.1007/978-3-662-58387-6_28
https://doi.org/10.1007/978-3-662-58387-6_28
https://doi.org/10.1007/978-3-662-58387-6
https://doi.org/10.1007/978-3-662-58387-6
https://doi.org/10.1007/978-3-662-58387-6
https://omelkonian.github.io/data/publications/formal-utxo.pdf
https://omelkonian.github.io/data/publications/formal-utxo.pdf
https://doi.org/10.1007/978-3-030-03427-6_27
https://doi.org/10.1007/978-3-030-03427-6_27
https://doi.org/10.1007/978-3-030-03427-6_27
https://eprint.iacr.org/2018/469
https://eprint.iacr.org/2018/469

	The Extended UTXO Model

