Plinth: A Plugin-Powered Language Built on Haskell
(Experience Report)

Ziyang Liu

Kenneth MacKenzie

Roman Kireev

Input Output Input Output Input Output
USA United Kingdom United Kingdom
ziyang.liu@iohk.io kenneth.mackenzie@iohk.io roman.kireev@iohk.io
Michael Peyton Jones Philip Wadler Manuel Chakravarty
Input Output Input Output Input Output
United Kingdom United Kingdom The Netherlands

michael.peyton-jones@iohk.io

Abstract

The Cardano blockchain is the first to use proof of stake,
offers native support for multiple currencies and is evolving
toward a distributed governance model. It supports smart
contracts through Plutus, a language based on System F,,
with recursion. About half a dozen languages compile into
Plutus, the first of which is Plinth (formerly Plutus Tx) — a
language that reuses a subset of the Haskell syntax, and has
been in commercial use since 2021.

Our journey building Plinth has been unconventional in
a number of ways. First, Plinth programs are written in a
subset of Haskell, using standard Haskell syntax and types,
which brings a number of advantages. Second, compilation is
primarily handled by a GHC plugin, one of the most intricate
we are aware of. Third, while some compiler optimizations
mirror those in Haskell, others diverge significantly to meet
on-chain execution constraints. Fourth, Plutus programs run
on an instrumented CEK machine with a formal specification
in Agda. This report reflects on our design choices, outlining
effective practices, challenges, and key takeaways, with an
emphasis on recent advances in the language, compiler, and
runtime.

CCS Concepts: - Software and its engineering — Func-
tional languages; Compilers.

Keywords: GHC Plugin, Lambda Calculus, Domain-Specific
Language, Abstract Machine, Blockchain, Cost Model

ACM Reference Format:

Ziyang Liu, Kenneth MacKenzie, Roman Kireev, Michael Peyton
Jones, Philip Wadler, and Manuel Chakravarty. 2025. Plinth: A
Plugin-Powered Language Built on Haskell (Experience Report). In

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.

Haskell 25, Singapore, Singapore

© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-2147-2/25/10
https://doi.org/10.1145/3759164.3759347

philip.wadler@iohk.io

manuel.chakravarty@iohk.io

Proceedings of the 18th ACM SIGPLAN International Haskell Sym-
posium (Haskell °25), October 12—18, 2025, Singapore, Singapore.
ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3759164.
3759347

1 Introduction

Blockchains and smart contracts offer a rich and distinctive
space for programming language design. Different blockchain
platforms differ in ledger model, execution semantics, and
contract capabilities, leading to diverse constraints on lan-
guage features and semantics. As a result, numerous domain-
specific languages have emerged across the ecosystems.

Even within Cardano alone, over half a dozen smart con-
tract languages exist. They can be grouped broadly into new
languages, embedded domain-specific languages (eDSLs),
and subsets of existing languages. Plinth belongs to the last
category — a language that reuses a subset of Haskell syntax
for authoring smart contracts.

There are some key distinctions between Plinth and tradi-
tional eDSLs. First, Plinth users write standard Haskell code
using familiar syntax. Instead of constructing ASTs explicitly,
as is typical for eDSLs, we reuse Haskell’'s Core AST, and
compile it into the target code. Second, rather than programs
being interpreted or compiled at runtime, compilation hap-
pens mostly when the Haskell program is compiled by GHC,
via a GHC Core plugin.!

Compared to traditional eDSLs, Plinth avoids unfamiliar
syntactic constructs that are not part of regular Haskell and
are specifically designed to work with each individual eDSL.
This aligns with Conal Elliott’s observations [11]: eDSLs
often force users to work with expression types (e.g., Expr Int)
instead of plain values (e.g., Int), rely heavily on overloading,
and do not support pattern matching or branching; efforts to
hide these symptoms can lead to obscure type errors. Cheney
et al. [10] have drawn similar conclusions. The rise of Al
tooling could further widen the gap in learning curves: LLMs
are reasonably effective at generating and explaining simple

IThere is a mechanism for lifting runtime values into target code, which
we’ll explain in Section 2.2.


https://orcid.org/0009-0004-6712-6043
https://orcid.org/0009-0009-3521-941X
https://orcid.org/0000-0003-4687-2739
https://orcid.org/0000-0003-0602-1657
https://orcid.org/0000-0001-7619-6378
https://orcid.org/0009-0005-6241-5273
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3759164.3759347
https://doi.org/10.1145/3759164.3759347
https://doi.org/10.1145/3759164.3759347

Haskell °25, October 12-18, 2025, Singapore, Singapore

anyLessThan10 ::[Integer] — Bool
anyLessThan10 =any (<10)

any :Va. (a — Bool) —[a] — Bool
any f=go where

go []=False

go (x:xs) =f x ||go xs

(a) Plinth

(As —>s3)
(Asds —
case
ds
[False
, (Ax xs —
force
(force if ThenElse
(lessThanInteger x 10)
(delay True)

(delay (s s xs))))

(c) UPLC

Z. Liu, K. MacKenzie, R. Kireev, M. Peyton Jones, P. Wadler, and M. Chakravarty

letrec
data (List ::+ —+) a |List_match where
Nil :List a
Cons :a —List a —List a
in
letrec
1go :List integer — Bool =
A(ds :List integer) —
List_match
{integer}
ds
{bool}
False
(A(x :integer) (xs :List integer) —
if ThenElse
{all dead. bool}
(lessThanInteger x 10)
(Adead — True)
(Adead —go xs)
{all dead. dead})
in
go

(b) PIR

Figure 1. A Plinth program and the corresponding PIR and UPLC

general-purpose code, but their performance tends to decline
with bespoke DSLs and niche languages [16].

Compared to building a new standalone language, imple-
menting Plinth is considerably easier. We reuse not only
GHC’s frontend components, but also Haskell’s build tools,
debugger, testing frameworks, and metaprogramming ma-
chinery. Each of these could be a substantial task for devel-
opers of a new language. For users, onboarding is smoother
thanks to existing Haskell learning resources, and the skills
gained are transferable beyond blockchain development.

This approach is unfortunately not without tradeoffs. We’ll
elaborate more on the challenges encountered in develop-
ing Plinth in Section 6, including the semantic mismatch
with Haskell’s lazy evaluation model, difficulties controlling
GHC’s optimizations and generating good error messages.
Some of these issues are relatively superficial and could be
resolved with targeted engineering effort; others are more
fundamental to our design choices.

The rest of the report is organized as follows. We describe
the compilation pipeline from Plinth to Untyped Plutus Core
(UPLC) in Section 2, and discuss compiling data types in Sec-
tion 3. In Section 4 we compare our optimization strategies
to those of GHC. Section 5 covers the UPLC evaluator and
costing. Section 6 presents broader lessons learned. Section 7

reviews related work, and Section 8 concludes the report
with a discussion on future directions.

2 Plinth and the Compilation Pipeline

Plinth supports a subset of Haskell’s syntax and is tailored
for Cardano’s EUTxO ledger model [7]. Unlike many other
blockchains, languages on Cardano validate transactions by
returning a boolean rather than performing actions like trans-
ferring assets, making functional programming a natural fit.
Developers write ordinary Haskell code, which is compiled
to Untyped Plutus Core (UPLC) — a small functional lan-
guage based on System F,, [13].? Sometimes referred to as
Plutus, UPLC is executed by validating nodes.

The compilation from Plinth to UPLC proceeds through
two intermediate languages: (1) Plutus IR (PIR) [24], a typed
intermediate representation that builds on TPLC (introduced
below) by adding support for recursive bindings and al-
gebraic data types, making it a convenient and readable
target for high-level optimizations; (2) Typed Plutus Core
(TPLC) [9], a System-F,, based calculus equipped with iso-
recursive types and the corresponding term-level constructs
for general recursion.

2Although UPLC is untyped, it results from erasing types from Typed Plutus
Core (TPLC), which is based on System F,,.



Plinth: A Plugin-Powered Language Built on Haskell (Experience Report)

Plinth

v

— (1 GHC FRONTEND ——

| lexing | | parsing |

| renaming | | type checking |

TH evaluation

VW GHCCore
— (@ GHC PLUGIN 2

REE

PIR optimization

UPLC optimization

(e

— (3 LIFTING N

Haskell
Runtime A
Value

PIR opt|m|zat|on

P> CompiledCode

UPLC opt|m|zat|on

Figure 2. Plinth’s Compilation Pipeline

} CompiledCode

UPLC is produced by erasing types from TPLC, which
substantially reduces code size — an important considera-
tion for on-chain storage and processing. TPLC and UPLC
are formally specified in [27]. PIR, TPLC, and UPLC include
a common and extensible collection of built-in types and
functions for efficiency. UPLC is executed using a CEK ma-
chine [12]. UPLC programs embedded in Cardano transac-
tions are referred to as Plutus scripts or Plutus validators.
Other than native scripts, which validate only simple condi-
tions, all script-validated Cardano transactions use Plutus.

Figure 1a shows a Plinth program which looks just like
idiomatic Haskell. Figures 1b and 1c show the corresponding
PIR and UPLC. UPLC contains constructs delay and force,
which serve as counterparts to TPLC’s type abstractions and
instantiations.® Originally, UPLC adopted ML-style value
restriction [33], requiring the body of type abstractions to
be syntactic values. We later chose to drop the restriction
to simplify compilation and avoid rejecting programs that
users would reasonably expect to be valid. As a result, the
body of a type abstraction can be any term, so delay is used
to prevent premature evaluation after erasing types. Delay
and force are used instead of regular lambdas for better
performance, as they appear frequently in Plutus scripts.

3We plan to support case on booleans in UPLC, which will remove the
need for delay and force in this example, as case branches are non-strict,
unlike the built-in function ifThenElse.

Haskell 25, October 12-18, 2025, Singapore, Singapore

2.1 Differences From Haskell

Plinth differs from Haskell primarily in evaluation strategy:
UPLC adopts strict evaluation for simplicity and efficiency
of runtime implementation, and predictable evaluation costs.
Like Haskell, Plinth supports both strict and non-strict bind-
ings; however, the latter are evaluated by name rather than
by need. For example, in let ~x =e; in ey, e; is re-evaluated
on each use of x in e;. Non-strict bindings can be useful for
enabling natural expression of certain code patterns, such
as contracts with multiple validation conditions, where each
condition is relevant in only one execution path.

Short-circuiting behavior is limited to built-in constructs
like if/case branches, and boolean operators && and | |.
As in most other strict languages, users cannot define new
non-strict operators.

Plinth supports many standard Haskell features (e.g., al-
gebraic data types, higher-order functions, type classes, and
parametric polymorphism), but not more advanced features
like existential types, type families, GADTs, IO and FFL

2.2 Compilation Stages

Figure 2 shows the three stage compilation pipeline.

Stage 1 uses GHC’s standard frontend, producing GHC
Core [19]. At this stage, users may use Template Haskell for
custom compile-time code transformation beyond what the
Plinth compiler can do during compilation. One example is
encoding data types using the built-in Data type, which we
discuss in more detail in Section 3.2.

Stage 2 runs in a GHC Core plugin. Users pass the Plinth
code to be compiled in a typed quotation to compile, which
is itself enclosed in a typed splice. This ensures compile runs
at Haskell compile time. Under the hood, compile installs a
GHC plugin that does the bulk of the work. For example, the
following compiles codeToCompile using the plugin:

codeToCompile :: t

codeToCompile =

compiled :: CompiledCode ©

compiled = $$(compile [ codeToCompile ] )
Template Haskell is used here solely to invoke the GHC

plugin. Alternatively, one can pass codeToCompile to the plc
function, and use GHC flag -fplugin to trigger the plugin:

compiled :: CompiledCode ©
compiled = plc (Proxy @"location") codeToCompile

Compile and plc can therefore be viewed as explicit staging
boundaries in multi-stage programming, similar to quota-
tions and splices in Template Haskell, and comparable anno-
tations in other languages [20, 31]. Using compile is usually
a better choice than plc, since the first parameter to plc is the
code location used in error messages, which is automatically
produced when using compile.



Haskell °25, October 12-18, 2025, Singapore, Singapore

To compile codeToCompile, the plugin needs to access its
definition, as well as the definitions it transitively depends
on. The standard approach is to mark the relevant defini-
tions as INLINABLE. CompiledCode T wraps the compiled PIR
and UPLC. It is indexed by a Haskell type, providing type
safety in the Haskell environment by ensuring the code be-
ing compiled has the correct type. Haskell constructs in
codeToCompile unsupported by Plinth cause a compile error.

Stage 3 happens during the Haskell program’s execution,
where Haskell runtime values can be lifted into PIR and
compiled to UPLC. Note that this occurs at the runtime of
the Haskell program — not during the on-chain execution of
UPLC. From the on-chain execution perspective, this is still
compile time.

Lifting is primarily used when a function takes a parame-
ter, and returns a CompiledCode that depends on it. Consider
the following:

f = Integer — CompiledCode ( Integer — Integer)

fx=3%8(compile | Ay—>x+y ])
This code fails to compile, causing the plugin to emit an error,
because x needs to be compiled into a constant in UPLC, but
its value isn’t available at compile time, when the plugin
runs. This reflects a stage constraint imposed by the Plinth
compiler: any variable inside the code passed to compile or
plc must either be top-level, or bound within that code.

Instead, the above compilation can be achieved by lifting
the value of x into CompiledCode at runtime, like so:

f = Integer — CompiledCode ( Integer — Integer)

f x=$$(compile [ Ax' Ay = x'+y ] ) ‘apply’ lift x
Here, lift ::Lift a = a — CompiledCode a serializes a runtime
value into the corresponding UPLC term, and apply con-
structs a UPLC application node from two subterms. Lift
is conceptually similar to lifting in Template Haskell, and
generally works for types that don’t contain functions.

Once we have the desired CompiledCode, we can then seri-
alize it, and include it in a transaction for on-chain execution.

3 Compiling Data Types
To support algebraic data types — a core Haskell feature — in

Plinth, we explored over time several options for encoding
data types in UPLC.

3.1 Scott Encoding and Sums of Products

We initially used Scott encoding [1], a technique for rep-
resenting data in lambda calculus that supports fast pat-
tern matching, especially when compared to alternatives
like Church encoding. This allows keeping the language
small and simple. Scott encoding yielded reasonably fast
programs, as construction and destruction of values involve
relatively small overhead. However, destruction is done via a
higher-order function, and strict evaluation in UPLC means

Z. Liu, K. MacKenzie, R. Kireev, M. Peyton Jones, P. Wadler, and M. Chakravarty

all branches need to be evaluated. This overhead was initially
expected to be negligible compared to the cost of crypto-
graphic operations. However, later performance measure-
ments showed that this assumption didn’t hold.

To address this, we extended the UPLC language with na-
tive sums of products [17], introducing two new AST nodes,
Constr and Case, for efficient construction and destruction
of values. This simplified data representations, and led to a
30% performance improvement on average.

3.2 Data Encoding via Pattern Synonyms and
Template Haskell

Despite the above strategies — particularly sums of prod-
ucts — being efficient in principle, we observed that many
users bypassed them entirely, instead working directly with
the built-in Data type. This is a loosely typed representa-
tion based on CBOR [5] for on-chain interchange, primarily
used to represent arguments passed to Plutus validators. It
is unrelated to Haskell’s data keyword, despite the name.

Matching on Data is verbose and costly, involving a chain
of built-in calls to extract tags and arguments. It is also lower
level and less type safe than using algebraic data types. How-
ever, converting between Data and other representations
is even more expensive, particularly when handling inputs
from the blockchain. As a result, users often favor using Data
throughout to avoid the conversion, prompting us to add
support for encoding data types using Data.

We considered modifying the compiler to allow compiling
PIR data types into Data, but rejected this option: Data is less
expressive (e.g., it cannot contain functions) which would
complicate the compiler; handling polymorphic types would
be cumbersome; and supporting choosing encodings on a
per-type basis would add more complexity. Instead, we added
a source-level mechanism leveraging Template Haskell and
pattern synonyms, without touching the compiler.

Specifically, users can define a data type inside a Tem-
plate Haskell quote, which generates a data type that wraps
Data, along with suitable pattern synonyms — one per data
constructor — for construction and destruction. For instance,

asData [ d | data Ex a = Ex; Integer | Ex; aa |]

becomes newtype Ex a =Ex Data, along with two bidirec-
tional pattern synonyms for constructing and destructing
Ex; and Ex;. Ex, is shown below and Ex; is omitted.

(ToData a, FromData a) =
a—>a— Exa

pattern Ex; :

pattern Ex; a b «
Ex ( dataAsConstr —
( (==) 1 > True
, [fromData — a, fromData — b] ))
where
Ex; a b= Ex (mkConstr 1 [toData a, toData b])



Plinth: A Plugin-Powered Language Built on Haskell (Experience Report)

Type classes like ToData and FromData allow Ex to be poly-
morphic, and it can contain any datatype convertible to and
from Data.

4 Optimizing PIR and UPLC

Optimization for Plinth diverges from Haskell’s optimization
due to several factors: (1) Plinth is strict with no laziness;
(2) scripts must meet tight size and execution budget limits,
and minimizing size is often as important as optimizing
speed; and (3) Plinth targets an abstract machine, making
certain optimizations useful for targeting machine code —
like unboxing — superfluous.

For example, GHC’s full laziness transformation [18] floats
bindings out of lambdas to reduce redundant computation.
In Plinth, doing so is far less useful. Since non-strict bindings
are not evaluated lazily, floating them out of lambdas doesn’t
avoid recomputation.

As another example, floating a binding inwards is good for
Haskell [18] (as long as it is not floated into a lambda), but it
could make a Plinth program more expensive. For instance:

let ~a=rhsinlet ~b= ..a.. inb +b

Because b is used twice, floating the binding of a into the
definition of b causes the overhead of let-bindings to be
incurred twice.*

In addition, due to Plinth’s strictness, transformations like
beta and eta reduction may be unsound. For example:

let and = Ax. Ay. if x then y else False in and I r

This cannot be rewritten to if [ then r else False, because
the latter doesn’t evaluate r if [ is false, unlike and [ r. How-

ever, it remains valid to transform (Ax.e; )¢y into let !x=¢; in e;.

Nonetheless, some GHC optimizations remain valid and
beneficial for Plinth. For example, a non-strict binding that
is sure to be evaluated can be made strict. This is particu-
larly useful for Plinth since the binding would otherwise be
evaluated on every use. Case-of-case and case-of-known-
constructor optimizations are also safe and effective for
Plinth. Our inliner is also heavily inspired by GHC’s inliner,
though it is often more conservative since inlining can in-
crease code size — a critical concern given the strict size
limits of Plutus scripts. Nonetheless, there are ways to force
inlining, such as using an inline function similar to that pro-
vided by GHC.Magic, or using Template Haskell to produce
inlined code before passing it to the Plinth compiler.

We optimize both PIR and UPLC, depending on which
is more appropriate. For instance, PIR has algebraic data
types and let-bindings, making it the right place for case-of-
known-constructor and floating bindings in/out. Moreover,

4The RHS of a, rhs, is evaluated twice regardless of the floating, but addi-
tional overhead associated with let-bindings will occur twice, rather than
once, if a is floated inwards.

Haskell 25, October 12-18, 2025, Singapore, Singapore

since PIR is typed, many optimization errors can be detected
early by the PIR typechecker, making the process safer.
Common sub-expression elimination (CSE), on the other
hand, is better suited to UPLC, for two reasons: (1) unlike
inlining which can unlock further optimizations, CSE often
destroys optimization opportunities, so running it too early
is harmful; (2) with types erased, and datatypes and recursion
compiled away, more common subexpressions arise in UPLC.
GHC similarly runs CSE towards the end of the pipeline.
One difference is that we run CSE interleaved with other
simplifier passes, because we observe that CSE can lead to
additional inlining opportunities, which can in turn unlock
additional CSE opportunities. Consider this example:

Ax. [ ((Ay. 1+(y+y)) (0+x))
((Az. 24(z+z)) (0+x))

After a round of CSE, the two subexpressions 0+x are re-
placed with a variable w. Now w can be inlined (replacing
y and z), revealing a new common subexpression, w + w,
which can be further eliminated by another round of CSE.
Considering this, we first run the main simplifier iterations
(which include inlining but not CSE), followed by several
passes (four by default) of CSE interleaved with the simplifier.
We apply certain optimizations to both PIR and UPLC;
a key example is inlining, as it frequently unlocks further
optimization opportunities. We don’t currently apply any
optimizations to TPLC, as we’ve found the combination of
PIR and UPLC optimizations to be sufficient. All TPLC opti-
mizations can be done equally effectively at the PIR stage,
while UPLC optimizations are useful because the erasure of
types opens up additional optimization opportunities.

5 Runtime and Costing

Plinth programs are compiled to Untyped Plutus Core (UPLC),
and executed by a highly optimized CEK machine written
in Haskell. The CEK machine is integrated into the Cardano
node and is responsible for executing all UPLC scripts, re-
gardless of the source language. It is engineered for high
performance and accurate tracking of execution costs.

Besides performance, another key requirement is back-
wards compatibility. Old scripts must execute identically in
perpetuity to preserve blockchain history. This necessitates
retaining legacy behavior even when it is suboptimal. We
address this through versioned built-ins, or semantic variants.
The appropriate variant is selected based on the language
version and the blockchain’s protocol version in use.

The CEK machine tracks CPU and memory usage via a
cost model. Each evaluation step (e.g., looking up a variable
or processing a lambda abstraction) incurs a fixed cost, while
built-in function calls are charged based on argument sizes
via costing functions — numerical models fitted using R to
benchmarked data. Costs are measured in CPU and memory
units: one CPU unit equals one picosecond of CPU time on



Haskell °25, October 12-18, 2025, Singapore, Singapore

a dedicated benchmarking machine, and one memory unit
equals 8 bytes. In contrast to some blockchains, Cardano
ensures that script inputs can be determined before on-chain
execution, enabling accurate cost estimation ahead of time.

The design of UPLC and its runtime allows for extensibil-
ity: the language is parameterized over a set of built-in types
and functions. It also allows for different evaluator imple-
mentations, with each free to define its own notion of value
(e.g., whether values include environments). While originally
intended to support multiple blockchains, the extensibility
remains useful for testing and benchmarking.

This flexibility, however, introduces substantial ad-hoc
polymorphism, which could hurt performance without care-
ful handling. We address this by specializing and inlining,
which can sometimes be quite delicate. The INLINABLE
pragma is conservative and often fails to inline even with
GHC.Magic. inline used at the callsites. In practice, we mostly
use the INLINE pragma, which works well for small defini-
tions, but often still needs to be paired with GHC.Magic.inline
for larger ones to ensure inlining occurs.

Another layer of complexity arises from the need to cache
certain computations. Combined with the above concern, this
requires carefully interleaving NOINLINE and INLINE prag-
mas. It can be time consuming to get right, but is worth the ef-
fort — one example saw a 6.7% speedup on average by adding
a few INLINE pragmas and calls to GHC.Magic.inline.

Ensuring correct inlining behavior has, in practice, re-
quired manual inspection of GHC Core. This can’t be rea-
sonably automated,” and can be a painstaking process: GHC
Core output can span tens of thousands of lines in a single
file, with deeply nested expressions and widespread use of
casts that make it hard to follow.

In pursuit of performance, the evaluator often departed
from idiomatic Haskell — using custom strict monads, man-
ually written instances, and techniques like unboxed vectors
for tight control over allocation and evaluation.

GHC’s compilation behavior has also surprised us at times.
For example, -fpedantic-bottoms can significantly alter
operational semantics; strict let-bindings may behave dif-
ferently from strict case expressions. In one case, these led
to a 20% slowdown in the evaluator.

Nonetheless, our Haskell evaluator implementation is
quite high-level and readable; we are pleased with its per-
formance, and are continually impressed by how well GHC
compiles such a tall tower of abstractions down to efficient
code operating on unboxed values. As an example, com-
puting Fibonacci numbers on the CEK machine is roughly
12 times slower than in native Haskell — a reasonable per-
formance given the overhead from virtualization and cost

SWhile tools like inspection-testing can check for simple properties, our
use case involves more nuanced requirements — certain things need to be
optimized in very particular ways — that such tools are not designed to
handle.

Z. Liu, K. MacKenzie, R. Kireev, M. Peyton Jones, P. Wadler, and M. Chakravarty

accounting. Cardano enforces strict execution budgets: cur-
rently 10ms per transaction and 20ms per block. That our
evaluator meets these constraints in many real-world sce-
narios highlights its efficiency and suitability for production,
and shows that, with careful design, profiling, and iteration,
Haskell remains a compelling choice for building a perfor-
mant, production-grade blockchain VM.

6 Learnings and Observations

Our experience with Plinth suggests that compiling from a
subset of an existing host language — rather than building
a new language or an eDSL — can be an effective strategy
for designing smart contract languages, and the underly-
ing principles and lessons may apply well beyond this do-
main. As discussed in Section 1, this approach offers several
advantages. Similar strategies have been adopted by other
Cardano languages including Scalus [28] and OpShin [23],
which reuse subsets of Scala and Python syntax, respectively.

Despite its strengths, this approach also presents some
challenges. A main limitation of Plinth is that its evalua-
tion strategy differs from Haskell’s: it is a strict language
that permits by-name bindings, but not by-need (i.e., lazy)
evaluation. This leads to subtle but important differences in
programming style compared to idiomatic Haskell.

For example, composing list operations is inefficient, as
it eagerly materializes all intermediate results — unlike in
Haskell, where laziness avoids this overhead. Guarded re-
cursion, a common Haskell idiom, is generally not useful
in Plinth. Tail recursion may perform worse than regular
recursion due to how the CEK machine executes UPLC.

As aresult, while Plinth’s surface syntax — a simple subset
of Haskell — makes it easy for developers to get started,
writing optimized code requires an adjustment in mindset,
especially for experienced Haskell developers. This, however,
can be addressed with future enhancements to the language.
Lazy evaluation could in theory be implemented for UPLC,
though doing so would be challenging in terms of efficiency,
security, and predictability of evaluation costs. Or we could
introduce limited built-in lazy constructs (like lazy lists) to
bring back some of the Haskell idioms in Plinth.

Due to the semantics of Plinth, we generally recommend
enabling the Haskell language extension Strict. This makes
all bindings strict by default, ensuring they are evaluated at
most once, whereas non-strict bindings may be evaluated
multiple times, leading to high execution cost.

Furthermore, our reliance on GHC comes with its own
challenges. It can be tricky to suppress certain unwanted
GHC transformations (e.g., inlining, specialization) while pre-
serving others. Some GHC transformations can complicate
the process of identifying and compiling specific Haskell
functions to domain-specific constructs. To work around
this, Plinth comes with its own version of base, where some
functions are annotated with the OPAQUE pragma to prevent



Plinth: A Plugin-Powered Language Built on Haskell (Experience Report)

inlining, and some data types are declared in specific ways
(e.g., using data instead of newtype, and using non-strict
fields) to prevent certain GHC optimizations.

Generating user-friendly error messages can also be tricky.
GHC Core is desugared and often diverges from the surface
code, making it difficult to provide meaningful diagnostics.
Supporting multiple major GHC versions has also proven
difficult, due to the instability of GHC API across major
releases. These issues are less fundamental — for instance,
leveraging a source plugin could enhance error reporting,
which we plan to explore.

Initially, we envisioned a unified Haskell-based workflow,
where both on-chain and off-chain components would be
written in Haskell with shared code — an appealing idea in
principle. However, developers over time have gravitated
toward off-chain frameworks in more mainstream languages
like JavaScript and Python. We believe several factors con-
tributed to this shift. Off-chain code often integrates with
user-facing systems like wallets and web applications, areas
where Haskell sees limited adoption. Moreover, unlike de-
veloping a language targeting UPLC, there is little inherent
advantage to implementing off-chain frameworks in Haskell.
This led to more community effort being directed toward
JavaScript and Python frameworks — especially due to the
network effects of these popular languages — which quickly
became more mature and better supported. Finally, the over-
lap in practice between on-chain and off-chain code is usually
limited to data type definitions, and this is made manageable
by Plutus Contract Blueprints [4], which enable serialization
and cross-language sharing of schema definitions.

7 Related Work

While GHC plugins are a powerful mechanism for program
transformation, complex production uses remain rare. This
makes Plinth’s architecture a relatively novel case. One re-
lated effort compiles GHC Core to Cartesian Closed Cate-
gories [11], which can be interpreted into different concrete
targets. Categorifier [6] applies this to compile a subset of
Haskell to C for flight control systems. The same categorical
approach has also been applied to automatic differentiation
for deep learning [30]. In contrast, Plinth targets a specific
backend (PIR) rather than a general categorical abstraction.
This gives us greater control over compilation: we support
a broader range of Haskell constructs (e.g., non-function
values, type class methods) and achieve faster compilation.

Rather than integrating Plinth compilation directly into
GHG, it is also possible to build a standalone compiler us-
ing GHC as a library. A notable example is the compiler for
Clash [3], which leverages GHC as a library to compile a
subset of Haskell into hardware description languages like
VHDL and Verilog. We chose the plugin approach for several
reasons. It makes developing Plinth programs feel similar to
regular Haskell development — using GHC, and tools like

Haskell 25, October 12-18, 2025, Singapore, Singapore

Cabal, GHCIi, and Template Haskell as usual — which is es-
pecially attractive to teams already invested in the Haskell
ecosystem. Besides, this approach produces CompiledCode
values in Haskell, enabling users to inspect, manipulate and
test them with regular Haskell. This further keeps the work-
flow close to idiomatic Haskell, lowering the learning curve
and tooling overhead. A standalone compiler, by contrast,
offers more control, simplifies the surface syntax (e.g., by au-
tomatically enabling flags and deriving instances), and could
improve error reporting — a direction we’d like to explore.

Formal methods play a significant role in the develop-
ment of Plinth and its runtime. While Plinth does not have
a fully verified semantics, TPLC and UPLC are formalized
in Agda [9], with progress and preservation proofs and
executable semantics used in conformance tests. A recent
overview is given in [8]. A certified compilation framework
for PIR and UPLC is also under development [21]. Structured
Contracts [32] introduces a framework for reasoning about
the specifications of Cardano smart contracts.

Besides Plinth, there are several other Cardano languages
targeting UPLC. These include Plutarch [26] — a traditional
Haskell eDSL. The advantages of Plinth’s approach compared
to eDSLs have been discussed in Section 1. Plutarch, however,
has the benefit of being easier to develop and maintain, as it
does not require deep integration with GHC — an eDSL is a
regular Haskell library for manipulating expressions.

Apart from Plutarch, there are also standalone languages [ 2,
14], and Scala, Python and TypeScript-based languages [23,
25, 28]. Plinth also serves as the compilation target for Mar-
lowe [29], a high-level Haskell eDSL for financial contracts.

Quoted DSLs (QDSLs) [10, 22] offer another approach to
designing domain-specific languages. Like Plinth, QDSLs
reuse the host language’s AST, allowing use of simple val-
ues and native branching. Compared to QDSLs, Plinth has
much less syntactic overhead since no explicit quoting or
splicing is required, and benefits from working, via a plugin,
directly with GHC Core, which is much smaller and simpler
to manipulate than Template Haskell ASTs.

8 Conclusions and Future Work

Plinth demonstrates that compiling from a subset of Haskell
is a viable and practical approach for developing domain-
specific languages. In this report we presented the language,
the compilation and runtime processes, and reflected on the
design choices, highlighting both benefits and limitations.

Looking ahead, we aim to support modules in UPLC [15] to
enable modular on-chain code and better reuse. We also plan
to investigate using a GHC source plugin to reduce unwanted
transformations, and improve error reporting by preserving
source-level context. Furthermore, we are exploring ways to
introduce laziness into the language, along with developer
experience improvements, including support for multiple
major GHC versions.



Haskell °25, October 12-18, 2025, Singapore, Singapore

Acknowledgments

Plinth owes its existence to the efforts of many people, espe-
cially our current and former team members. We are partic-
ularly grateful to Ana Pantilie, Andrew Sutherland, James
Chapman, Kasey White, Lorenzo Calegari, Lucas Rosa, Mar-
shall Swatt, Mauro Jaskelioff, Nikolaos Bezirgiannis, Philip
DiSarro, Ramsay Taylor, Seungheon Oh, and Yuriy Lazaryev,
for advancing the design, implementation, and formalization
of Plinth and Plutus, and to the many others whose work and
ideas have shaped the experiences described in this report.

References

[1] Martin Abadi, Luca Cardelli, and Gordon D. Plotkin. 1993. Types for the
Scott Numerals. https://api.semanticscholar.org/CorpusID:126166954

[2] Aiken. 2025. Aiken | The modern smart contract platform for Cardano.
https://aiken-lang.org/.

[3] Christiaan Baaij, Matthijs Kooijman, Jan Kuper, Arjan Boeijink, and
Marco Gerards. 2010. CAaSH: Structural Descriptions of Synchronous
Hardware Using Haskell. In 2010 13th Euromicro Conference on Digital
System Design: Architectures, Methods and Tools. 714-721. doi:10.1109/
DSD.2010.21

[4] Matthias Benkort. 2025. Plutus Contract Blueprint. https://cips.
cardano.org/cip/CIP-57.

[5] Carsten Bormann and Paul E. Hoffman. 2020. Concise Binary Object
Representation (CBOR). RFC 8949. doi:10.17487/RFC8949

[6] Categorifier. 2025. Categorifier: Interpret Haskell programs into any
cartesian closed category. https://github.com/con-kitty/categorifier.

[7] Manuel M. T. Chakravarty, James Chapman, Kenneth MacKenzie,
Orestis Melkonian, Michael Peyton Jones, and Philip Wadler. 2020.
The Extended UTXO Model. In Financial Cryptography and Data Secu-
rity: FC 2020 International Workshops, AsiaUSEC, CoDeFi, VOTING, and
WTSC, Kota Kinabalu, Malaysia, February 14, 2020, Revised Selected
Papers. Springer, 525-539. doi:10.1007/978-3-030-54455-3_37

[8] James Chapman, Arnaud Bailly, and Polina Vinogradova. 2024. Apply-
ing Continuous Formal Methods to Cardano (Experience Report). In
Proceedings of the 2nd ACM SIGPLAN International Workshop on Func-
tional Software Architecture, FUNARCH 2024, Milan, Italy, 6 September
2024. ACM, 18-24. doi:10.1145/3677998.3678222

[9] James Chapman, Roman Kireev, Chad Nester, and Philip Wadler. 2019.
System F in Agda, for Fun and Profit. In Mathematics of Program
Construction (MPC) 2019. Springer, 255-297. doi:10.1007/978-3-030-
33636-3_10

[10] James Cheney, Sam Lindley, and Philip Wadler. 2013. A Practical
Theory of Language-Integrated Query. SIGPLAN Not. 48, 9 (Sept.
2013), 403-416. doi:10.1145/2544174.2500586

[11] Conal Elliott. 2017. Compiling to Categories. Proc. ACM Program.
Lang. 1, ICFP (2017), 27:1-27:27. doi:10.1145/3110271

[12] Matthias Felleisen and Daniel P. Friedman. 1987. Control Operators,
the SECD-Machine, and the A-Calculus. In Formal Description of Pro-
gramming Concepts - III: Proceedings of the IFIP TC 2/WG 2.2 Work-
ing Conference on Formal Description of Programming Concepts - III,
Ebberup, Denmark, 25-28 August 1986. North-Holland, 193-222.

[13] Jean-Yves Girard. 1972. Interprétation fonctionnelle et élimination des
coupures dans I'arithmétique d’ordre supérieur. PhD Thesis, Université
de Paris VII (1972).

[14] Helios. 2025. Helios. https://github.com/HeliosLang/compiler.

[15] John Hughes. 2025. Modules in UPLC. https://github.com/cardano-
foundation/CIPs/pull/946.

[16] Sathvik Joel, Jie JW Wu, and Fatemeh H. Fard. 2024. A Survey on
LLM-based Code Generation for Low-Resource and Domain-Specific
Programming Languages. arXiv:2410.03981 [cs.SE] https://arxiv.org/

[l

Z. Liu, K. MacKenzie, R. Kireev, M. Peyton Jones, P. Wadler, and M. Chakravarty

abs/2410.03981

[17] Michael Peyton Jones. 2023. Sums-of-products in Plutus Core. https:
//cips.cardano.org/cip/CIP-85.

[18] Simon L. Peyton Jones, Will Partain, and André L. M. Santos. 1996.
Let-floating: Moving Bindings to Give Faster Programs. In Proceed-
ings of the 1996 ACM SIGPLAN International Conference on Functional
Programming, ICFP 1996, Philadelphia, Pennsylvania, USA, May 24-26,
1996. ACM, 1-12. doi:10.1145/232627.232630

[19] Simon L. Peyton Jones and André L. M. Santos. 1998. A Transformation-
Based Optimiser for Haskell. Sci. Comput. Program. 32, 1-3 (1998), 3-47.
doi:10.1016/S0167-6423(97)00029-4

[20] Oleg Kiselyov. 2014. The Design and Implementation of BER MetaO-
Caml. In Functional and Logic Programming. Springer International
Publishing, Cham, 86-102.

[21] Jacco O.G. Krijnen, Manuel M.T. Chakravarty, Gabriele Keller, and
Wouter Swierstra. 2024. Translation Certification for Smart Contracts.
Science of Computer Programming 233 (2024), 103051. doi:10.1016/j.
5€ic0.2023.103051

[22] Shayan Najd, Sam Lindley, Josef Svenningsson, and Philip Wadler. 2016.
Everything Old Is New Again: Quoted Domain-Specific Languages. In
Proceedings of the 2016 ACM SIGPLAN Workshop on Partial Evaluation
and Program Manipulation (St. Petersburg, FL, USA) (PEPM ’16). ACM,
25-36. doi:10.1145/2847538.2847541

[23] OpShin. 2025. OpShin: A simple pythonic programming language for
Smart Contracts on Cardano. https://github.com/OpShin/opshin.

[24] Michael Peyton Jones, Vasilis Gkoumas, Roman Kireev, Kenneth
MacKenzie, Chad Nester, and Philip Wadler. 2019. Unraveling Recur-
sion: Compiling an IR with Recursion to System F. In Mathematics of
Program Construction (MPC) 2019. Springer, 414-443. doi:10.1007/978-
3-030-33636-3_15

[25] plu-ts. 2025. plu-ts. https://github.com/HarmonicLabs/plu-ts.

[26] Plutarch. 2025. Plutarch. https://github.com/Plutonomicon/plutarch-
plutus.

[27] Plutus Core Team. 2025. Formal Specification of the Plutus Core
Language. https://github.com/Intersect MBO/plutus/tree/master/doc/
plutus-core-spec.

[28] Scalus. 2025. Scalus - DApps Development Platform for Cardano.
https://scalus.org/.

[29] Pablo Lamela Seijas, Alexander Nemish, David Smith, and Simon J.
Thompson. 2020. Marlowe: Implementing and Analysing Financial
Contracts on Blockchain. In Financial Cryptography and Data Security
- FC 2020 International Workshops, AsiaUSEC, CoDeFi, VOTING, and
WTSC, Kota Kinabalu, Malaysia, February 14, 2020, Revised Selected
Papers (Lecture Notes in Computer Science, Vol. 12063). Springer, 496—
511. doi:10.1007/978-3-030-54455-3_35

[30] Mike Sperber. 2023. Fast Deep Learning with Categories.
https://icfp23.sigplan.org/details/FHPNC-2023/6/Fast-Deep-
Learning-with-Categories.

[31] Walid Taha and Tim Sheard. 1997. Multi-Stage Programming with
Explicit Annotations. In Proceedings of the 1997 ACM SIGPLAN Sym-
posium on Partial Evaluation and Semantics-Based Program Manip-
ulation (Amsterdam, The Netherlands) (PEPM '97). ACM, 203-217.
doi:10.1145/258993.259019

[32] Polina Vinogradova, Orestis Melkonian, Philip Wadler, Manuel M. T.
Chakravarty, Jacco Krijnen, Michael Peyton Jones, James Chapman,
and Tudor Ferariu. 2024. Structured Contracts in the EUTxO Ledger
Model. In 5th International Workshop on Formal Methods for Blockchains,
FMBC 2024, April 7, 2024, Luxembourg City, Luxembourg (OASIcs,
Vol. 118). Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 10:1-
10:19. doi:10.4230/OASICS.FMBC.2024.10

[33] Andrew K. Wright. 1995. Simple Imperative Polymorphism. Lisp Symb.
Comput. 8, 4 (Dec. 1995), 343-355. doi:10.1007/BF01018828

Received 2025-06-09; accepted 2025-07-17


https://api.semanticscholar.org/CorpusID:126166954
https://aiken-lang.org/
https://doi.org/10.1109/DSD.2010.21
https://doi.org/10.1109/DSD.2010.21
https://cips.cardano.org/cip/CIP-57
https://cips.cardano.org/cip/CIP-57
https://doi.org/10.17487/RFC8949
https://github.com/con-kitty/categorifier
https://doi.org/10.1007/978-3-030-54455-3_37
https://doi.org/10.1145/3677998.3678222
https://doi.org/10.1007/978-3-030-33636-3_10
https://doi.org/10.1007/978-3-030-33636-3_10
https://doi.org/10.1145/2544174.2500586
https://doi.org/10.1145/3110271
https://github.com/HeliosLang/compiler
https://github.com/cardano-foundation/CIPs/pull/946
https://github.com/cardano-foundation/CIPs/pull/946
https://arxiv.org/abs/2410.03981
https://arxiv.org/abs/2410.03981
https://arxiv.org/abs/2410.03981
https://cips.cardano.org/cip/CIP-85
https://cips.cardano.org/cip/CIP-85
https://doi.org/10.1145/232627.232630
https://doi.org/10.1016/S0167-6423(97)00029-4
https://doi.org/10.1016/j.scico.2023.103051
https://doi.org/10.1016/j.scico.2023.103051
https://doi.org/10.1145/2847538.2847541
https://github.com/OpShin/opshin
https://doi.org/10.1007/978-3-030-33636-3_15
https://doi.org/10.1007/978-3-030-33636-3_15
https://github.com/HarmonicLabs/plu-ts
https://github.com/Plutonomicon/plutarch-plutus
https://github.com/Plutonomicon/plutarch-plutus
https://github.com/IntersectMBO/plutus/tree/master/doc/plutus-core-spec
https://github.com/IntersectMBO/plutus/tree/master/doc/plutus-core-spec
https://scalus.org/
https://doi.org/10.1007/978-3-030-54455-3_35
https://icfp23.sigplan.org/details/FHPNC-2023/6/Fast-Deep-Learning-with-Categories
https://icfp23.sigplan.org/details/FHPNC-2023/6/Fast-Deep-Learning-with-Categories
https://doi.org/10.1145/258993.259019
https://doi.org/10.4230/OASICS.FMBC.2024.10
https://doi.org/10.1007/BF01018828

	Abstract
	1 Introduction
	2 Plinth and the Compilation Pipeline
	2.1 Differences From Haskell
	2.2 Compilation Stages

	3 Compiling Data Types
	3.1 Scott Encoding and Sums of Products
	3.2 Data Encoding via Pattern Synonyms and Template Haskell

	4 Optimizing PIR and UPLC
	5 Runtime and Costing
	6 Learnings and Observations
	7 Related Work
	8 Conclusions and Future Work
	References

