A Layered Certifying Compiler Architecture

Jacco O.G. Krijnen
Utrecht University
Utrecht, Netherlands
j.o.g.krijnen@uu.nl

Joris Dral
Well-Typed
Utrecht, Netherlands
joris@well-typed.com

Abstract

The formal verification of an optimising compiler for a real-
istic programming language is no small task. Most verifica-
tion efforts develop the compiler and its correctness proof
hand in hand. Unfortunately, this approach is less suitable
for today’s constantly evolving community-developed open-
source compilers and languages. This paper discusses an
alternative approach to high-assurance compilers, where a
separate certifier uses translation validation to assess and
certify the correctness of each individual compiler run. It
also demonstrates that an incremental, layered architecture
for the certifier improves assurance step-by-step and may be
developed largely independently from the constantly chang-
ing main compiler code base. This approach to compiler
correctness is practical, as witnessed by the development
of a certifier for the deployed, in-production compiler for
the Plinth smart contract language. Furthermore, this paper
demonstrates that the use of functional languages in the
compiler and proof assistant has a clear benefit: it becomes
straightforward to integrate the certifier as an additional
check in the compiler itself, leveraging the the Rocq prover’s
program extraction.

Keywords: Compiler correctness, Translation validation, Cer-
tified compilation, Smart contracts

ACM Reference Format:

Jacco O.G. Krijnen, Wouter Swierstra, Manuel Chakravarty, Joris
Dral, and Gabriele Keller. 2025. A Layered Certifying Compiler
Architecture. In Proceedings of the 3rd ACM SIGPLAN International
Workshop on Functional Software Architecture (FUNARCH °25), Oc-
tober 12-18, 2025, Singapore, Singapore. ACM, New York, NY, USA,
20 pages. https://doi.org/10.1145/3759163.3760427

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).

FUNARCH °25, Singapore, Singapore

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-2146-5/25/10
https://doi.org/10.1145/3759163.3760427

Wouter Swierstra
Utrecht University
Utrecht, Netherlands
w.s.swierstra@uu.nl

Manuel Chakravarty
Tweag & I0G
Utrecht, Netherlands
chak@applicative.co

Gabriele Keller
Utrecht University
Utrecht, Netherlands
g.k.keller@uu.nl

1 Introduction

Compiler verification is an old problem, dating back to the
dawn of functional programming [McCarthy and Painter
1967]. More recently, interactive proof assistants have been
successfully used to establish the correctness of realistic com-
pilers. These efforts target well defined and stable languages,
such as C [Leroy et al. 2016] and Standard ML [Kumar et al.
2014]; a substantial part of the compiler is developed in the
proof assistant, thereby closely coupling development and
verification. Yet the correctness of compilers for languages
that are in flux — the de facto standard in today’s landscape
of community-developed open source compilers — where
verification and development can proceed independently
remains a less explored problem.

We propose a more flexible approach to compiler cor-
rectness based on translation validation [Pnueli et al. 1998].
Rather than porting a compiler to a proof-assistant and prov-
ing its implementation correct, we show how to certify the
correctnes of a run of the compiler post-hoc, generating
a (machine checkable) proof that the source program’s se-
mantics have been preserved. Translation validation is not
a new idea, but this paper demonstrates that it is a viable
alternative to the verification of industrial strength compilers
for functional languages under active development.

Moreover, by using a layered architecture, we show how
verification need not be an all-or-nothing endeavour. Each
pass is specified, validated and verified separately. By hav-
ing the compiler emit the intermediate code after each pass,
we link the compiler’s behaviour to its mechanised formali-
sation. The (1) specification, (2) decidability of that specifi-
cation, and (3) verification of each pass happens in a theo-
rem prover, independently of compiler development. Each of
these steps, layer by layer, improves the trustworthiness of
the overall system. Throughout the paper, we will show that
a layered certifier, even when only partially implemented,
helps developers to improve the correctness of the compiler
and provides machine-checkable certificates to end-users
who care about the correct compilation of their programs.
This is particularly important in application areas that re-
quire a high degree of assurance and a verifiable connection
between source and target code.

https://orcid.org/0000-0002-1840-472X
https://orcid.org/0000-0002-0295-7944
https://orcid.org/0009-0005-6241-5273
https://orcid.org/0009-0005-7657-2050
https://orcid.org/0000-0003-1442-5387
https://doi.org/10.1145/3759163.3760427
https://doi.org/10.1145/3759163.3760427

FUNARCH ’25, October 12-18, 2025, Singapore, Singapore

As an example, consider financial applications, such as
blockchains. Here, smart contracts—that is, compiled code on
public blockchains such as Ethereum or Cardano—control
significant amounts of financial assets, yet must operate un-
der adversarial conditions. Bugs in smart contract code are
a significant problem in practice [Atzei et al. 2017]. To make
matters worse, code is typically hard to update securely, once
it has been committed to the blockchain. Recent work has
also established that compilers for smart contract languages
can exacerbate this problem [Park et al. 2020, Section 3]. Bugs
encountered in the Vyper compiler, for example, have been
shown to compromise smart contract security. Consequently,
translation certificates for smart contracts are valuable tools
to improve the security of applications on public blockchains.
Moreover, given that the blockchain only carries the com-
piled code, the irrefutable link to the source code establishes
the provenance of the on-chain code.

To demonstrate the feasibility of our approach, we have
implemented large parts of a certifier for the Plinth smart
contract compiler! using the Rocq prover. The code of the
certifier is publicly available?. The Plinth language and com-
piler are under active development, independent of our ver-
ification effort. Previous work in this domain has focused
on specifying different passes done by the Plinth compiler
[Krijnen et al. 2024]. Yet in itself, this check is too limited: to
guarantee that the semantics of a program is preserved, we
still need to prove that each pass preserves a program’s mean-
ing. The current work builds on these results, presenting an
overarching methodology, that also includes the proof of cor-
rectness of passes and the development of a certifier. More
specifically, this paper makes the following contributions:

e We present our layered methodology for constructing a
certifying compiler (Section 2). This approach enables
the incremental verification of production compilers
under active development, such as the Plinth compiler.

e We present two different architectures for retrofitting
the verification on the compiler (Section 3): the certifier
which constructs machine-checkable certificates in
the form of Rocq proof scripts (Section 3.1), and the
formal pedantic mode, which runs as a check directly
in the compiler code base (Section 3.2). Crucially, this
tooling is already of value before all layers of all passes
have been implemented, gradually providing stronger
guarantees as more passes are formalised.

e We formalise the semantics of Plinth’s intermediate
representation (PIR) and build a framework for prov-
ing validator equivalence of two programs using Rocq
(Section 4).

https:/github.com/Intersect MBO/plutus
Zhttps://github.com/jaccokrijnen/plutus-cert

Jacco O.G. Krijnen, Wouter Swierstra, Manuel Chakravarty, Joris Dral, and Gabriele Keller

e To evaluate the viability of this approach, we consider
the work necessary for implement the layers of a typi-
cal pass in the Plinth compiler and collect initial bench-
marks of the certified compilation of an auction con-
tract (Section 5). Moreover, we evaluate the formal
pedantic mode by enabling it on a test-suite of the
compiler.

It is important to note that translation validation has been
succesfully applied in industrial-strength compilers for im-
perative languages [Lopes et al. 2021; Sewell et al. 2013], but
functional compilers have received much less attention. We
defer a more detailed comparison between our approach and
the existing work on translation validation to Section 6. Our
results extend and adapt a great deal of existing work on
compiler verification. Yet these technical contributions are
connected by a single overarching result: the application
of these ideas to an industrial strength compiler, yielding a
result far greater than the sum of its parts.

2 Layered Certification Methodology

Verification of a production compiler is no small task. The
well-known CompCert project contains around 100 000 lines
of code and was estimated to have cost six person-years of
effort [Kistner et al. 2017], its proof being “among the largest
ever performed with a proof assistant” [Leroy et al. 2016].
These formally verified compilers have been developed from
scratch with verification in mind. The post-hoc verification
of an existing compiler is much harder, especially if it is
still under active development. Adding new optimisation
passes, language features, or performance improvements
all require substantial effort to verify. Yet the continuous
evolution of languages and compilers is common practice.
How can we address compiler correctness of compilers under
active development in a less monolithic fashion?

We propose a layered certification methodology, based on
translation validation [Pnueli et al. 1998]: instead of proving
that the compiler always produces correct code, we check the
correctness of code generated by individual compiler runs.
Our approach is layered in the sense that we gradually and
incrementally work towards the complete certification of the
entire compiler. Each layer comes with its own verification
artifacts; each artifact improves the overall assurance of the
compiler as a whole. Moreover, our methodology can be
applied to each compiler pass in isolation. In this way, we
manage the complexity of the verification effort, yet the fruit
of our labour is of immediate value to compiler developers.
The development is split into the following four separate
layers, which are illustrated in Figure 1 for a single pass.

The specification layer consists of a formal specification
of the compiler pass, mechanised in a proof assistant. Such a
specification takes the form of an inductively defined relation
on pairs of abstract syntax trees (R; in Figure 1). In our case,

https://github.com/IntersectMBO/plutus
https://github.com/jaccokrijnen/plutus-cert

A Layered Certifying Compiler Architecture

i pi = Pit1 3 verification
\]
3 bi R; Pi+1 3 automation
| I
3 (pi , hints , piy) 3 interface
! I
3 R = 3 specification
. ;
\
e pi —— pin ’ﬁ: pass
‘ ‘ ‘ \‘\\\1 l //‘/ ‘ ‘ | compiler

Figure 1. The layered architecture for a run of the multi-pass
compiler pipeline, highlighting a single pass that transforms
program p; into p;41. The four colored boxes represent the
layers implemented in the proof assistant.

we have mechanised them in the Rocq prover (Section 2.1).
We will refer to such specifications as translation relations.

The interface layer bridges the gap between the formal
development in Rocq and the compiler (Section 2.2). We
modify the compiler to produce a compilation trace, that
records for each pass its input and output ASTs (p; and p;
in Figure 1) together with additional information about the
run, such as the pass name and optional hints about the
transformation that took place. By parsing the compilation
trace into Rocq, we can now formulate and prove the theorem
stating that a given run of the compiler behaved according
to its specification. Given the size of the programs involved
however, writing the proofs by hand becomes tedious quite
quickly.

The automation layer (Section 2.3), defines a decision
procedure for each translation relation. This decision proce-
dure can establish proof that a particular run of the compiler
behaves in accordance with its specification. More precisely,
for each pass it decides whether R;(p;, pi+1) holds.

Finally, the verification layer (Section 2.4) consists of a
formal proof that each translation relation preserves program
semantics (represented using the ~ operator in Figure 1). The
verification layer asserts the correctness of the translation
layer. Therefore, any compiler run that is accepted by the
automation layer is guaranteed to preserve the semantics of
the input program.

In Section 2.5 we elaborate on how each layer increases
the assurance of the compiler.

2.1 Specification Layer

The specification layer defines the intended behaviour of
the compiler. For each compiler pass, the specification layer
consists of a translation relation: a binary relation on abstract
syntax trees, relating the program before the pass (which
we may refer to as “pre-term”) and the result of the pass

FUNARCH ’25, October 12-18, 2025, Singapore, Singapore

B(x) =t Brt o>t/

Brx > t

INL_VAR_1

—— INL_VAR_2
Brxp x

Brs o> s (x+—>5s),Brt >t

INL_LET
Brletx=sint > letx=sint

Brsop> s B+t t

oY INL_APP
Brstp> s't

Brto t

INL_LAM
BrAx.t > Ax.t'

Figure 2. Specification of an inlining pass for the lambda
calculus with let

Inductive inlining :
list (string * expr) -> expr -> expr -> Prop :=
| inl_var_1 B x t t'} :
lookup x B = Some t ->
inlining B t t' ->
inlining B (Var x) t'
| inl_var_2 {B x} :
inlining B (Var x) (Var x)

Figure 3. Same specification as a Rocq inductive datatype

(“post-term”). To illustrate these specifications, consider a
simple lambda calculus with let bindings:

tu=x|Ax.t|tt]|letx=tint

Let inlining is a typical compiler pass that may replace some
(but not necessarily all) let-bound variables with their def-
inition. Such a transformation is non-local, since we need
to keep track of the let-bindings in scope. The specification
will take the form of a ternary relation B + s > t which states
that pre-term s can be transformed into post-term ¢t under
the context B, which maps variables to their let-bound defi-
nitions. The translation relation is presented in Figure 2 as a
set of inference rules, and in Figure 3 as a Rocq inductive.
Specifically, Rule INL_VAR_1 states that we may conclude
that a variable x is replaced by a term ¢’ when x was let-
bound to term ¢ (first premise) and t itself is translated to
t' (second premise). This allows repeated inlining passes.
Rule INL_VAR_2 states that a variable occurrence may also
be left unchanged, e.g., if it is bound by a lambda or if the
compiler decides not to inline the corresponding let binding.

FUNARCH ’25, October 12-18, 2025, Singapore, Singapore

The remaining are congruence rules, where the Rule INL_LET
extends the environment B with the definition of x.

Note that this relation is not a function, but a proper re-
lation. It may relate one pre-term t to many post-terms,
depending on which variable occurrences are inlined. It is
therefore more general than an implementation in the com-
piler, which uses a fixed strategy or heuristic to decide which
occurrences to inline. This leaves room for compiler devel-
opers to choose any strategy, meaning any change to the
compiler heuristics or ‘magic-numbers’ [Peyton Jones and
Marlow 2002] is independent of this specification.

The specification layer of the compiler consists of induc-
tively defined translation relations for each compiler pass,
implemented as an inductive type in Rocq. We generate doc-
umentation in the form of TgX inference rules from the Rocq
definitions using the InducTgX tool [Krijnen 2024]. This tool
uses MetaCoq’s metaprogramming capabilities to produce
TgX code. Indeed, the rules in Figure 2 were generated from
the definition in Figure 3 using InducTgX. The resulting doc-
umentation is more readable for developers unfamiliar with
some of the peculiarities of Rocq syntax.

2.2 Interface Layer

While having a formal specification is certainly useful, the
specification layer is unrelated to the actual compiler. The
interface layer establishes that connection. Firstly, the com-
piler dumps the ASTs after each pass, labelled with the name
of the pass. We call the collection of dumps a compilation
trace. Next, the proof assistant parses this trace to the corre-
sponding inductive types.

This does require a compiler modification. Yet it is non-
invasive and most compilers already include facilities to
dump intermediate programs. In the case of our certifier for
the Plinth compiler, we only had to adapt existing pretty
printing infrastructure to produce terms that can readily be
read into Rocq (see also Section 4).

The interface layer is a trusted component: we do not
prove its correctness, yet it is indispensable in our design.
Hence, the printer and parser should be as straightforward as
possible. For example, we chose our AST definitions in Rocq
to closely mirror the internal ones of the Plinth Compiler
(Section 4). This significantly reduces the trusted computing
base and maintains a close connection between the com-
piler and proof assistant. Moreover, overall correctness only
depends on the correct printing and parsing of the source
program and the final compiled program, not on intermediate
ASTs. While we cannot formally verify the parser and pretty
printer, we can check a ‘roundtrip’ property — by asserting
that after pretty printing the Rocq AST and subsequently
parsing the resulting program, reconstructs the original AST.
This property gives us a high degree of confidence that the
parsers and pretty printers involved do not change the syn-
tactic structure of a program in any meaningful way:.

Jacco O.G. Krijnen, Wouter Swierstra, Manuel Chakravarty, Joris Dral, and Gabriele Keller

2.3 Automation Layer

Given a run of the compiler, the interface and specification
layers produce a proof obligation: we need to establish that
each compiler pass behaves as expected. We could interac-
tively prove such properties using Rocq’s tactics, yet this
is inadvisable. The programs and proof goals can become
quite large and hard to read. Furthermore, proof automation
using tactics, such as auto, tend to be slow on such large
proof goal. To make matters worse, these tactics may fail
or require excessively large search depths to produce the
desired proof. Instead, we use proof by reflection [Bertot and
Castéran 2013, Chapter 16] and write a decision procedure
for each relation in the specification layer. These decision
procedures form the automation layer.

A decision procedure for the inlining relation decides if
two terms are in the relation:

Definition dec_inlining :
list (string * bool) -> expr -> expr -> bool :=
fix dec_inlining B s t := match s, t with
| Var x, t => Var x =2 t ||
(match lookup x B with
| Some u => dec_inlining B u t
| None => false
end)
|

This recursive function accepts an environment of let-bound
variables and two terms, and should return true if they are in
the inlining translation relation. The first case of the match
checks rules INL_VAR_2 and INL_VAR_1.

To make this connection between the translation relation
and decision procedure precise, we prove an equivalence:

Lemma inline_equiv B el e2 :
dec_inlining B el e2 = true <-> inlining B el e2.

For many passes, the equivalence can be proven by straight-
forward induction on the first term. This lemma allows us to
immediately construct a proof when two concrete terms t1
and t2 (dumped by the interface layer) are in the translation
relation:

Lemma spec_t1_t2 : inlining [] t1 t2.
Proof. now (apply inline_equiv). Qed.

Some compiler passes may rely on the results of a global
static analysis, or perhaps they perform multiple transfor-
mations at once. In such cases, it can help to extend the
interface layer, having the compiler emit further information
that aids the decision procedure. For example, The inliner
in the Plinth compiler also performs simultaneous variable
renaming. In such cases we can simplify the decision proce-
dure by emitting these renamings explicitly alongside the
abstract syntax trees in the interface layer.

A Layered Certifying Compiler Architecture

2.4 Verification Layer

The first three layers certify that each compiler run behaves
according to a syntactic specification. What remains is to
establish that this specification itself is correct. In the ver-
ification layer, we address the classic compiler verification
problem of establishing semantic preservation of each indi-
vidual pass.

There are many ways of proving preservation of seman-
tics, depending on the style of semantics and the program-
ming languages involved. Here we will assume a big-step
operational semantics of the form t ==> v, where term t
evaluates to value v. Let us also assume a notion of “top-level”
programs that are accepted by the compiler. For our simple
lambda calculus these will be closed terms of type Z — Z.
We then consider two top-level programs p and g observa-
tionally equivalent when they have the same input-output
(and consequently, termination) behaviour:

Definition eq_obs p q := forall n m,
Apply p (Const n) ==> Const m <->
Apply g (Const n) ==> Const m.

That is, applying p and g to the same integer constant re-
sults in equal output values. Here we have omitted some
assumptions about p and g such as their well-typedness. Fur-
thermore both p and g are written in the same language —
whereas compilers correctness may also involve target code
with different semantics.

To complete the verification layer we need to prove a
correctness theorem of the following type:

forall p q, inlining [1 p q -> eq_obs p q.

One standard way of proving this is by establishing a simu-
lation, that is, proving that the following diagram commutes
for arbitrary closed expressions s and t:

When s and t are related through the translation relation
for inlining, evaluating either of them results in values that
are also related via the translation relation. For the case
where s and t are top-level progams, this implies observa-
tional equivalence.

Upon completing the correctness proofs of each individual
compiler pass, we can establish that a complete run of the
compiler has preserved the semantics of its input program.

2.5 Gradual assurance

Verification need not be an all-or-nothing endeavour. By
developing the verification architecture in layers and pass by

FUNARCH ’25, October 12-18, 2025, Singapore, Singapore

pass, it becomes possible to gradually increase the assurance
of the compiler. Each layer improves the trustworthiness of
the compiler, even if not all layers for each have been fully
implemented.

To define the specification layer for a pass, we have to de-
velop a good understanding of the corresponding implemen-
tation in the compiler. The informal reasoning and studying
of the source code, as well as the task of formulating a trans-
lation relation in Rocq’s logic, may already uncover bugs or
complications in the design of compiler pass.

The interface layer enforces that the formalisation does
not happen in a vacuum and works with the actual repre-
sentation of programs, rather than an idealised or simplified
version. By testing the round-trip property, we obtain a high
degree of assurance that the representation in the proof as-
sistant and compiler are equal.

The automation layer produces a tangible proof that the
compiler adheres to its specification. Not only can it be
used to check individual runs of the compiler, the resulting
proof term can be indepedently validated as it is machine-
checkable. Using program extraction, the corresponding de-
cision procedures may be run independently of the proof
assistant.

Finally, the verification layer ensures that the translation
relation is semantically sound. This guarantees that a partic-
ular compiler pass is semantics preserving.

3 Certifier

Next, we discuss how the four layers of our methodology
can be used to build a certifier, working with the compiler, to
generate verifiable certificates. The latter can be bundled and
distributed together with the compiled software, enabling
users to check the certificate before executing the software.

A certificate is a proof script containing a top-level theorem.
Depending on which compiler passes have been formalised
and up to which layer, the certifier assembles all available
evidence to support this theorem. As the formalisation of
the system is extended, the certifier’s claims in the top-level
theorem get stronger and stronger.

AN
source
< compiler > trace >

AN
target

AN
Rocq formalisation Il

)

certifier

certificate

checker

Figure 4. Architecture of the certifier (in orange) retrofitted
on an existing compiler (white). Square boxes represent files,
rounded boxes represent tools.

FUNARCH ’25, October 12-18, 2025, Singapore, Singapore

Certificate generation is irrelevant during the develop-
ment process, but part of the release process of a the compiled
software. However, we do not suggest to disable the certifier
completely; instead, we provide the option of a lightweight
mode, which we call formal pedantic mode (Section 3.2). This
mode allows to catch compiler bugs early, but it does not
produce a certificate, avoiding the overhead of constructing
and checking a formal proof.

3.1 The architecture of a certifier

Certifying a compiler run is a three-step process, illustrated
in Figure 4:

1. The compiler dumps a compilation trace: a text file
containing labelled intermediate ASTs of the program
that is being compiled, and optionally hints about the
transformation that took place.

2. A simple post-processing tool turns the textual dump
into a structured Rocq project. It includes the compi-
lation trace as a defined object, and imports the Rocq
formalisation of the compiler passes and correspond-
ing layers as a library. Finally, it includes the top-level
theorem with proof about the compilation trace.

3. Finally, the checker tool invokes the Rocq compiler to
build the project and check the proof of the top-level
theorem. Since that theorem mentions a source and
target programs, the checker also confirms that they
match the provided source and target programs.

We consider each of the steps in detail and turn our attention
to PIR again (which we will more formally discuss in Section
4).

3.1.1 Dumping a compilation trace. The compiler and
certifier need to use a common format for the trace. Here,
we outline the Rocq definitions of the AST of PIR and an
enumeration of the compiler passes. The abstract syntax
follows the concrete syntax in Figure 6 (we omit almost
all productions of the grammar here, with the exception of
terms).

Inductive term :=
| var : name -> term
| LamAbs
(* ... *%).
Inductive pass :=
Rename | DeadCode | (* ... *) .
Definition comp_trace := term * list (pass * term).

: binderName -> ty -> term -> term

A comp_trace contains the source parsed by the compiler,
together with a list of intermediate ASTs, paired with a label
identifying the generating compiler pass.

We opted for a text-based format and used generic pro-
gramming to implement basic pretty-printing for the types
involved in a comp_trace (essentially a simplified version of

Jacco O.G. Krijnen, Wouter Swierstra, Manuel Chakravarty, Joris Dral, and Gabriele Keller

GHC’s derived Show instances). On the Rocq side, we defined
suitable notations to parse a trace directly as source code.

3.1.2 Generating a certificate. A certificate is a Rocq
project that consists of three main components: the formal
development of the different passes, the trace, and a top-level
theorem. To this end, we developed a small command-line
utility that simply includes the first two and creates a proper
project structure. To then construct the type of the top-level
theorem, the formal development exposes a basic interface:

Inductive claim :=
| AccordingToSpec :
| Verified : rel_verified -> claim
| Unchecked :

rel_decidable -> claim

claim.

A claim describes what gets checked for a given compiler
pass. Depending on the level of formalisation, this could be
according to specification if the pass has a completed automa-
tion layer (as witnessed by a decidable translation relation
rel_decidable), verified (witnessed by a verified, decidable
translation relation), or completely unchecked otherwise.

The top-level theorem is constructed with some helper
functions:

Definition claims_prop
: (pass -> claim) -> comp_trace -> Prop.
Definition trace_dec : forall claims trace,
option (claims_prop claims trace).

The claims_prop function computes the type of the top-level
theorem, given a claim for each pass and a trace. The result-
ing type is a conjunction of the form t; Ry taA- - *Aty—1 Ry_1 th.
Here, t; is a term and R; a relation depending on the claim:
an AccordingToSpec claim will result in the relation being
the corresponding translation relation, a Verified claim will
result in semantic equivalence, and an Unchecked claim will
be the universal relation, relating any two elements. The
trace_dec function then allows to decide this top-level the-
orem, which internally uses the decision procedures and
correctness results of the formalisation.

The proof script for this top-level theorem is therefore
completely generic, as it is only parametrised by the claims
and trace. Our command-line tool uses a simple textual tem-
plate to construct this final piece of the certificate.

3.1.3 Checking the certificate. To verify a certificate,
the checker uses Rocq to type-check the proof of the top-
level theorem and checks that it actually states a property
about the provided source and target program. This should be
done before distributing a certificate, after which users of the
compiled program can independently verify the certificate.

Since the formalisation is included as source code, it is
completely transparant which passes up to which layer are

A Layered Certifying Compiler Architecture

AN
source

compiler

extraction

formal pedantic mode

Rocq formalisation ﬂ

v X
target

Figure 5. Architecture of formal pedantic mode

proven. One can independently inspect the ASTs, transla-
tion relations, dynamic semantics and definition of semantic
equivalence to understand the top-level theorem.

3.2 Formal pedantic mode

Formal pedantic mode is a light-weight alternative to the full
architecture of Section 3.1, for retrofitting verification on the
compiler. The key idea is that after the compiler performs
a pass, it also immediately runs the corresponding decision
procedures in-process. But since decision procedures are de-
fined in the proof assistant, not in the compiler, this requires
some form of crossing language boundaries. In our case, we
have leveraged Rocq’s extraction mechanism [Letouzey 2002]
to generate Haskell code, leveraging the functional nature
of the formalisation.

Since our interface layer for PIR closely follows the syntax
of the compiler (Section 2.2), and both Gallina and Haskell
are statically-typed functional languages, it becomes trivial
to extract the decision procedures from the automation layer,
and integrate them in the Plinth compiler. After all, they
have the simple type term -> term -> bool.

Figure 5 illustrates how a compiler runs in formal pedantic
mode: if any of the decision procedures fail, the compiler
fails and does not produce target code. Note that there is no
certificate produced to witness the correctness compilation,
which is typically not necessary during the development
process (only at time of release). In this way, formal pedantic
mode offers an efficient alternative that can provide quick
feedback for potential miscompilations.

Additionaly, this mode is a valuable addition to a compiler
test suite. Compilers typically have a collection of sample
programs for measuring performance or testing succesful
termination. Since the decision procedures are available as
extracted Haskell code, it can easily be integrated and used
for testing the correctness of compilation of those test cases.
In Section 5 we discuss our initial experience of such an
integration for the Plinth compiler and an existing test suite.

4 Formalisation

To reason formally about program transformations, we need
to fix the semantics of the intermediate languages used by

FUNARCH ’25, October 12-18, 2025, Singapore, Singapore

K n= x| K>k

0,7 w= a|lo—or|Vauko|ldauko|oT]
ifix o7 |U

t s= x| Ax:nt|tt|Aa skt |t {t}|

iwrap ot |unwrapt | builtinF |

constant Uk | error 7| let [rec] b in ¢

b = [~x:t=t | auk=1 |
data a (f :: k) =c with x

c = x(7)

U = Bool|Unit|Data] ...

Figure 6. Syntax of PIR and PLC, PIR-specific constructs
highlighted

the Plinth compiler. This section outlines the key definitions
required for the verification layer and how to establish val-
idator equivalence of two programs. We have mechanised
these in Rocgq.

4.1 Syntax of PIR and PLC

The Plinth compiler accepts Plinth, a subset of Haskell, and
targets Plutus Core (PLC), which can be run on the Cardano
blockchain. Most of the optimisation passes are done on the
Plutus Intermediate Representation (PIR), a superset of PLC
which in turn is a superset of System F%, a polymorphic
lambda calculus with type functions and recursive types. Fig-
ure 6 presents the syntax of the kinds, types and terms of both
PIR and PLC (PIR-specific constructs have been highlighted
in grey). We use square brackets [] to indicate optional syn-
tax; a line over syntactic constructs indicates that these may
be repeated zero or more times. We sometimes write @ for
an empty list of bindings in a let group.

PIR and PLC share the same type language which con-
sist of type variables, functions and universal quantification,
lambda abstraction, application of type functions, an indexed
fixpoint type for iso-recursive types, and built-in types U.

The term language is a Church-style System F/,, where
iwrap and unwrap are the term-level witnesses for iso-
recursive types. Additionally, there is a set of built-in func-
tions F for efficient computation with built-in types, such
as arithmetic operations and hashing functions. We leave
this set implicit here. Execution may produce an error; each
error value is is annotated with its type to aid type checking.

PIR supports let bindings that can be mutually recursive.
There are various flavours of let-bindings: term-level binding
which can be strict or lazy (indicated by a ~ symbol), type
bindings and lastly algebraic datatypes (ADT) which can
have type variables and consist of a set of constructors ¢ and
an elimination principle x. Constructors are declared with a
name and type signature.

FUNARCH ’25, October 12-18, 2025, Singapore, Singapore

AFo:x ol o A(T,x:0)rt:t
T-LAMABS
ATF(Ax:0.t):0" >t
ArTk TU}T'
FUF ArF:(k=% = (k=%
FOXzkifixFX)7 o ATrt:o
T-IWRAP

A;Triwrap Frt:ifix F' ¢/

Figure 7. Selected rules of the PIR type system

4.2 Static semantics

The syntax in Figure 6 defines the types and kinds of PIR.
Kinds are either a base kind or function kind, and kinding
rules are of the form A + 7 :: k. The rules of the kind system
are standard (see for example [Pierce 2002]).

Type expressions may contain fS-redexes. To decide type
equality during type checking, the Plinth compiler therefore
uses a type normalisation algorithm. We define an inductive
relation o {| 7, stating that a type-expression ¢ normalises
to 7. Again, such reduction relations are fairly standard for
System F,.

Typing rules are of the form A;T + ¢ : 7 (Figure 7), stating
that in kinding context A and typing context I', term t has
type 7. In contrast to the standard presentation that has a
type-conversion rule, we define a syntax-directed system
that uses type normalisation, which aligns with the Plinth
type-checker. For example, T-LAMABs extends I" after first
normalising the type annotation ¢. The PIR type checker
ensures that it only checks terms against normalised types.
Similarly, our rules ensure that we only assign normalised
types to a term.

Type normalisation has another role in the type system:
it drives the unfolding of recursive types. In PIR, a recursive
type ifix F T represents a indexed fixpoint [Peyton Jones
et al. 2019] of a type-function F of kind (k = %) = (k = =).
The corresponding typing rule T-IWRAP unfolds fixpoint one
step by normalising an application of F.

The complete rules of the static semantics of PIR are given
in Appendix B.

4.3 Dynamic semantics

We define a dynamic semantics of PIR (and thus PLC) using
a strict, big-step operational semantics with substitution.
We write t |} r, stating that term ¢ evaluates to result r.
Here, r can be either a value or an error . Most rules are
entirely standard; we add rules for dealing with errors (which
abort the computation) and a set of rules for the various let-
constructs of PIR, both recursive and non-recursive (¢ |rec
and ¢ Unonrec 7 respectively).

In our Rocq mechanisation of the dynamic semantics, we
have covered the vast majority of PIR language constructs,

Jacco O.G. Krijnen, Wouter Swierstra, Manuel Chakravarty, Joris Dral, and Gabriele Keller

with the exception of recursive algebraic datatypes. Some
of the complex built-in operations (such as hashing primi-
tives) currently have no corresponding formalisation in Rocq.
However, by axiomatising their implementation, we can still
formally reason about optimisation passes, which almost
always leave built-in operations untouched.

The complete rules of the operational semantics of PIR
are given in Appendix C.

4.4 Validator equivalence

The Plinth compiler is primarily used to compile validators,
which are programs that can be deployed on the Cardano
blockchain to lock digital assets. On Cardano, any proposed
transaction needs to be validated before it is executed. For
each asset that it tries to transfer, the attached validator pro-
gram is executed to determine if the transaction may do so.
Typical conditions of a validator include public key authen-
tication and enforcing payment deadlines. Validators are the
fundamental building blocks for implementing higher-level
smart contracts on a UTXO-style blockchain.

A Plinth validator is a function of type Data — Unit. The
argument contains all information the validator may need
to perform its checks, such as the proposed transaction and
the current time. If the validator succeeds, it terminates with
a unit value (), otherwise it halts with an error.

Definition 1 (Validator equivalence =,). If p and q are
well-typed validator scripts, and i is an arbitrary constant of
type Data, we write p =4 q to mean

pil) = qil{

Definition 2 (Correct compiler pass). A translation relation
R is correct, when for all well-typed validator scripts p, q

PRq = p=wq

In other words, any two related programs have the same
operational behaviour. To completely verify the compiler, it
is required to prove that each translation relation from the
specification layer is correct.

Note that this notion of equivalence implies identical ter-
mination behaviour of related programs. In some compilers,
it may be fine if a non-terminating program is optimised
into a terminating one. In our case, this is a problem: a non-
terminating validator will never unlock funds, whereas a
terminating one might do so.

5 Preliminary evaluation

In this section, we evaluate the proposed methodology, doc-
umenting our experience with the certification of the Plinth
compiler. We briefly go through the formalisation of the
dead code elimination pass, and discuss how it impacts the
compiler’s codebase and what practical challenges we en-
countered during the proof development.

A Layered Certifying Compiler Architecture

Dead code elimination. Dead code elimination is an im-
portant compiler pass that is run several times in the simpli-
fier pipeline of the Plinth compiler. As the Plinth standard
libraries are included as a top-level let binding for every
program, dead code elimination is absolutely necessary to
keep code size of the generated binaries in check. We have
implemented the four layers for this pass and will briefly
reflect on each of those. A more detailed treatment of this
pass can be found in Appendix A.

The pass is concerned with let bindings. For example, the
compiler may analyze the following program

letx=3inlety=x+x1in 10

and decide that it can be optimised to the term 10. Note that
the pass is not always entirely trivial: x is dead code only
because y is dead code (and x is not used anywhere else).
Furthermore, PIR is strict, meaning that a binding may only
be removed when its evaluation has no side-effects (such as
throwing an error).

For the specification layer, let us consider the main rule
of non-recursive let bindings:

BV(b) NFV(let bs" int') =@
BTV(b) NFTV(let bs’ int') = @
b € Pure letbsint> letbs" int’

DCE-ELim
let (b;bs) int > let bs’ int’

Given a let with b; bs as its bindings, b may be removed
under a few conditions: (1) the term variables and (2) type
variables bound by b may not occur freely in the resulting
post-term (expressed as those sets being disjoint), (3) b is a
PURE binding (i.e. terminates without side-effects) and (4) the
rest of the term can be recursively translated. Since deciding
termination is undecidable in general, PURE is a sound subset
of terms that have the property (based on the corresponding
compiler analysis).

For the automation layer, we have defined the decision
procedures for the disjointness checks, the PURE property
and the translation relation itself and proven it equivalent
to the translation relation. Their implementations straight-
forwardly follow the inductive structure of the inference
rules.

The interface layer has identical functionality for most
passes: printing the pre- and post-term in the compiler and
then parsing them into Rocq (Section 2.2). For the dead code
elimination pass however, we implement some additional be-
haviour. As a result of removing let bindings, a let expression
may end up with zero bindings, so the compiler pass also
performs a bit of cleanup, transforming let @ in t into ¢.
Although we could include that transformation in the rules
such as DCE-NR-EL1M, it clutters the translation relation
and obscures the simplicity of two conceptually different
transformations.

Instead, we define a separate translation relation (denoted
here as ') that solely captures the cleanup of empty let

FUNARCH ’25, October 12-18, 2025, Singapore, Singapore

groups. The overall specification for the pass then becomes
Aty. to > 11 At >’ 1. Here, ty and £, are the terms dumped
by the compiler, but AST t;, which may still contain empty
let groups, never existed during compilation! Therefore, we
construct this virtual AST within Rocq in the interface layer,
using a straightforward recursive function on t, and t,.

Although decomposing a pass in this manner incurs some
more work in the interface layer, it pays off in the automa-
tion and verification layer: another example is the inliner
pass, which includes a form of dead code elimination. By
analogously decomposing that pass and constructing an in-
termediate AST in Rocq, translation relations remain simple
and can be reused across specifications.

Finally, for the verification layer, we have proven validator
equivalence using a simulation-style argument, with induc-
tion on the evaluation relation. In the forward direction
this requires proving a simple lemma that [0/x] t = t when
x ¢ FV(t). In the backwards direction, it requires a lemma
that any t € PURE terminates according to the big-step eval-
uation relation.

While dead code elimination may appear like a relatively
simple transformation, its structure is representative of more
complex optimisations. Its correctness relies on two program
analyses: purity of bound expressions and strong liveness
of variables. In general, compiler passes will often rely on
analysis results or pre-conditions established by previous
transformations. Those properties will have to appear in
some form in the translation relation.

Crucially, checking that the property of an analysis holds
can be much simpler than performing the analysis itself, as
we see with the disjointness check instead of a strongly live
variable analysis. Additionally, results of complexer analyses
may simply be dumped by the compiler alongside the ASTs
of the pass in the interface layer, leaving only the task to
check (in the automation layer) that they imply the required
property. This is also the reason that CompCert resorts to
translation validation for register allocation [Rideau and
Leroy 2010].

Constructing certificates. We ran our certifier on a real-
istic Plinth validator that implements an auction (260 LOC)
using a commodity laptop. The compiler pretty-printed and
dumped all 362 intermediate ASTs in about 35s, resulting
in 160MB of plain text. Generating the Rocq certificate took
2s, and the overall certificate can be compressed into 13MB
using standard gzip compression.

We built and type-checked the certificate with verifica-
tion claims on two passes (dead code elimination and non-
recursive let compilation), which took about 14 minutes.
The main culprit here is our Rocq parser for AST terms; the
actual proof checking is relatively fast. There is plenty of
low-hanging fruit to speed up the parser — but as a proof
of concept, the current implementation suffices. Note that
certificate generation is only run once per software release;

FUNARCH ’25, October 12-18, 2025, Singapore, Singapore

the formal pedantic mode gives similar guarantees more
cheaply. Running the certificate checker overnight is per-
fectly acceptable in this domain, where it is essential to only
deploy smart contracts that are correct.

One of the small engineering hurdles we encountered in
generating certificates is that a full compilation trace could
not fit in a single Rocq script, as cogc would run out of
memory due to the sheer size of the ASTs involved. Instead,
we now produce a single Rocq file per AST and construct
the trace by importing the ASTs from the compiled modules.
Running Rocq projects at this scale uncovers other issues.
For example, the naive Peano encoding of natural numbers
obviously does not scale to ASTs that use natural numbers
for the representation of variable names. These problems are
easy to overcome — we use a more efficient representation
now - but often unforeseen.

Integrating the Rocq formalisation as compiler tests.
To assess a formal pedantic mode in the Plinth compiler
(Section 3.2), we have also integrated our Rocq development
in the compiler, measured performance characteristics, and
observed the impact on the existing code-base. To this end,
we have extracted the Rocq decision procedure of the dead-
code elimination pass, checking the pass with several input
programs that contain dead code.

We have extended the compiler’s build system to run
Rocq’s extraction mechanism to produce Haskell before the
compiler is compiled. To interface with this generated code,
there is minimal glue code required, since we have made a
point of staying close to the compiler representation in the
formalisation.

The Plinth compiler contains a test-suite of golden tests
for each compiler pass: a set of PIR programs with their
expected output. These programs are usually small in size
and they test some behaviour relevant to the pass. In the
case of dead-code elimination, there are 16 such test cases.

To get a sense of the performance characteristics, we mea-
sured the execution time of the dead-code elimination deci-
sion procedures for each of the golden tests. They typically
run in a handful of milliseconds on a commodity laptop,
adding roughly 1-5% to the overall pass execution time.

We have also tested the decision procedure on a signifi-
cantly larger program: the interpreter for the Marlowe smart
contract language [Lamela Seijas and Thompson 2018]. This
interpreter evaluates contracts written in the Marlowe DSL,
used to implement a class of financial contracts. We noticed a
much longer execution time of 2-3s, dominating the overall
pass execution time. This can be explained by the fact that
our naive decision procedure is quadratic, as it repeatedly
computes the set of free variables in recursive calls. There
are numerous ways to resolve this issue. A tupling transfor-
mation would make the check linear again. Alternatively, we
can adapt the compiler to provide information about the set
of dead bindings that have been eliminated by a given pass,

Jacco O.G. Krijnen, Wouter Swierstra, Manuel Chakravarty, Joris Dral, and Gabriele Keller

removing the need for proof search in the decision procedure
altogether. Even if formal pedantic mode is slow for a certain
pass, most smart contracts are relatively small; developers
may always choose to run the formal pedantic mode less
frequently.

The impact on the Plinth compiler codebase has been
very modest. The extracted code from Rocq is around 1K
lines of code, whereas the glue code is only around 250 LOC.
Compared to the overall size of the Plinth project, this is
negligible.

Interestingly, we discovered a mismatch between the im-
plementation and the specification, as one of the tests failed.
It turned out that it was not a compiler bug, but that the
implementation was recently extended to include an excep-
tional case where parts of a datatype binding can be elimi-
nated (but not the full binding). This example indicates the
importance of such a test-suite to keep the compiler imple-
mentation and its specification in sync.

Proof engineering considerations. After working on the
formalisation of several compiler passes, we have noticed
that it is relatively easy to implement the specification and
automation layer, which suffice to set up the a specification
checker for certificates or formal pedantic mode of a pass.
For example, common duplication across translation relation
definitions such as compatibility rules (Section A.1) can be
factored out and reused. Moreover, dumping and parsing of
the interface layer can be reused, as most passes do not need
to dump more information than the pre- and post-terms.

Writing decision procedures for inductive definitions can
still be quite some work. To address this, we have adapted
work of the QuickChick project [Paraskevopoulou et al.
2022]. That work uses meta-programming in Rocq to gen-
erate decision procedures and soundness proofs, but for a
limited subset of inductive definitions. As a result, we can
sometimes save time by generating (parts of) the decision
procedures and soundness lemmas.

The verification layer however requires most of the work.
In part, this is expected because of the larger proofs involving
the formalised metatheory. Writing out the required lemmas
about substitutions, variable binding, and other common
patterns in working with our validator equivalence requires
substantial effort.

Another challenge mechanising proofs about PIR is that
it is a not a toy language: it requires reasoning about lan-
guage constructs that can be awkward or inconvenient to
manipulate, that are often omitted in more idealised language
formalisations. For example, mutually recursive let-groups
cause the AST types to have nested recursion, resulting in
more complicated induction schemes and a programming
style aimed at passing Rocq’s termination checker. Other
constructs such as built-in functions (which require a notion
of partial application) and errors (with atypical control flow)

A Layered Certifying Compiler Architecture

all require extra rules in the big-step semantics, resulting in
many more cases in each proof.

Although most of our Rocq development is specific to
the PIR pipeline, the ideas of the methodology are generally
applicable for compilers that use a nano-pass architecture.
Furthermore tooling such as InducTgX can readily be used
for generating TgX from other inductive specifications.

At the same time, the layered approach is not limited to
the Rocq prover. Developers at IOG have started adopting the
layered methodology for the PLC backend of the compiler,
but using the Agda language [Bove et al. 2009].

6 Discussion
6.1 Related work

Correct compilation. There is a rich line of work on com-
piler verification, we will not attempt to give an exhaustive
overview of the area. We have previously mentioned other
verification projects using interactive proof assistants, no-
tably CakeML [Kumar et al. 2014] and CompCert [Leroy
et al. 2016]. Those projects focus on compilers implemented
in a proof assistant for well defined and stable languages.
Despite the higher cost of such approach, verified compilers
(when total) have a completeness guarantee that translation
validation cannot offer: each run of the compiler is correct.

The idea of translation validation goes back to work on
compiling synchronous programming languages [Cimatti
et al. 1997; Pnueli et al. 1998]. Over the years, it has been
succesfully applied to optimising compilers on a larger scale,
such as GCC [Necula 2000; Sewell et al. 2013] and LLVM
[Lopes et al. 2021], catching numerous compiler bugs. These
works have a similar motivation to ours (retrofitting verifica-
tion on existing compilers) but differ in the type of languages,
which have a low-level imperative style and are first-order.
The semantics are based on control flow graphs, often com-
bined with symbolic execution and SMT solvers for finding
proofs. While this allows for a high degree of automation, the
verification is restricted to intra-procedural optimisations.

Cogent [O’Connor et al. 2021] is a certifying compiler
based on translation validation, also built for a purely func-
tional language. It is aimed at systems programming, and
features a uniqueness type system to avoid manual memory
management, as well as garbage collection. In contrast to our
approach, it only works for a white-box approach in the sense
that it assumes full access and control over the compiler, as
the compiler generates the target code (a well-defined subset
of C), and embedding of the source program as well as the
correctness proofs. Furthermore, the correctness proofs are
concerned with the translation steps between vastly differ-
ent representations and semantics, whereas optimisations
are deferred to the (trusted) C compiler.

The term certifying compiler was originally introduced
in the context of proof-carrying code [Necula 1997], which
focuses on distributing compiled code together with proof of

FUNARCH ’25, October 12-18, 2025, Singapore, Singapore

a safety policy, such as type-safety or memory-safety. Such
untrusted code can then safely interact with a host system.
Our certificates are similarly distributed with compiled code,
but do not interact with a host system: Plutus validators are
stand-alone programs and our certificate is meant to support
reasoning about functional properties of the source code.

There are several other compilers for smart contract lan-
guages. ConCert is a smart contract verification framework
in Rocq [Annenkov et al. 2020]; there is ongoing work on
verifying a compiler for the Albert language on the Tezos
blockchain; the K framework has been used to verify Ethereum
contracts using translation validation techniques similar to
those described here [Park et al. 2020].

Existing Formalisations. The type system for PLC has
been formalised before [Chapman et al. 2019], using an
intrinsically-typed syntax in Agda. Typing rules for PIR have
been described previously [Peyton Jones et al. 2019], but do
not align completely with the compiler implementation of
the type-checker. In the current work, we give a semantics
that stays true to the current implementation of the Plinth
compiler.

Krijnen et al. [2024] have previously described specifica-
tions of various passes of Plinth compiler. That work, how-
ever, does not discuss the verification of those specifications,
which we address in the verification layer—a key contribu-
tion of the current paper. Without the validator equivalence,
as defined in Section 4 and employed in Section 5, there may
still be bugs that change the meaning of a program in both
the compiler and the specification.

6.2 Further work

End-to-end verification. The surface language of the
Plinth compiler is a subset of Haskell, which is directly desug-
ared via GHC Core into PIR, we have not yet included those
languages in the formalisation. Can we extend this approach
to create an end-to-end certifying compiler? This would re-
quire a formalisation of Haskell’s rich surface language as
well as GHC’s Core. To make matters more complicated, PIR
is a strict language and the subset of Haskell is compiled
as if it were a strict language. Any correctness preservation
proof would have to work under the (unusual) assumption
that GHC Core is evaluated strictly.

As an alternative, we have started building on the work
done in the context of CertiCoq [Anand et al. 2017], a project
that aims to implement a verified compiler for Rocq’s Gallina.
Other work [Annenkov et al. 2022] has recently shown how
to extend CertiCoq’s pipeline to target a typed intermediate
language AL. To achieve end-to-end certification, we envi-
sion a verified translation from this lambda calculus to PIR.
This approach does have its own drawbacks. Firstly, Plinth
was designed specifically to have a single language for on-
chain and off-chain code. Writing smart contracts in Gallina
would break this property, even if the resulting contracts

FUNARCH ’25, October 12-18, 2025, Singapore, Singapore

can be extracted to Haskell. More practically, any realistic
smart contract requires numerous functions from the Plinth
standard libraries, all written in Haskell. We have an initial
experiment using hs2coq [Spector-Zabusky et al. 2018] to
port these libraries to Gallina that appears quite promising.

Semantic verification. So far, we have verified the trans-
lation relations for dead code elimination and non-recursive
let compilation. The existing work by Krijnen et al. [2024]
gives an overview of the various passes of Plinth. We expect
that most of these, such as variable renaming or let desug-
aring, will be relatively easy to verify with the architecture
presented here. Other passes, such as the translation from al-
gebraic datatypes to their Scott encodings [Peyton Jones et al.
2019] will be harder to verify, since the correctness relies on
parametricity properties. To that end, we have ongoing work
on a logical relation for PIR, to prove a much more powerful
contextual equivalence, which implies validator equivalence.

Language support. In the semantics described so far, we
have not yet formalised the entire Plinth language, as we do
not yet cover recursive ADTs. Plinth’s treatment of (locally
bound) ADTs is somewhat non-standard. We do not believe
this to be a fundamental limitation of our approach, but have
simply chosen to focus our engineering effort elsewhere.

References

Abhishek Anand, Andrew Appel, Greg Morrisett, Zoe Paraskevopoulou,
Randy Pollack, Olivier Savary Belanger, Matthieu Sozeau, and Matthew
Weaver. 2017. CertiCoq: A verified compiler for Coq. In The third inter-
national workshop on Coq for programming languages (CogPL).

Danil Annenkov, Mikkel Milo, Jakob Botsch Nielsen, and Bas Spitters. 2022.
Extracting functional programs from Coq, in Coq. Journal of Functional
Programming 32 (2022), e11. https://doi.org/10.1017/5S0956796822000077

Danil Annenkov, Jakob Botsch Nielsen, and Bas Spitters. 2020. ConCert: a
smart contract certification framework in Coq. In Proceedings of the 9th
ACM SIGPLAN International Conference on Certified Programs and Proofs.
215-228.

N. Atzei, M. Bartoletti, and T. Cimoli. 2017. A Survey of Attacks on Ethereum
Smart Contracts (SoK). In Principles of Security and Trust (POST 2017)
(LNCS, Vol. 10204).

Yves Bertot and Pierre Castéran. 2013. Interactive theorem proving and
program development: Coq’Art: the calculus of inductive constructions.
Springer Science & Business Media.

Ana Bove, Peter Dybjer, and Ulf Norell. 2009. A brief overview of Agda-
a functional language with dependent types. In Theorem Proving in
Higher Order Logics: 22nd International Conference, TPHOLs 2009, Munich,
Germany, August 17-20, 2009. Proceedings 22. Springer, 73-78.

J. Chapman, R. Kireev, C. Nester, and P. Wadler. 2019. System F in Agda,
for Fun and Profit. In Mathematics of Program Construction (MPC 2019)
(LNCS, Vol. 11825).

Alessandro Cimatti, Fausto Giunchiglia, Paolo Pecchiari, Bruno Pietra, Joe
Profeta, Dario Romano, Paolo Traverso, and Bing Yu. 1997. A provably
correct embedded verifier for the certification of safety critical software.
In Computer Aided Verification: 9th International Conference, CAV’97
Haifa, Israel, June 22-25, 1997 Proceedings 9. Springer, 202-213.

Daniel Kastner, Xavier Leroy, Sandrine Blazy, Bernhard Schommer, Michael
Schmidt, and Christian Ferdinand. 2017. Closing the gap-the formally
verified optimizing compiler CompCert. In SSS°17: Safety-critical Systems
Symposium 2017. CreateSpace, 163-180.

Jacco O.G. Krijnen, Wouter Swierstra, Manuel Chakravarty, Joris Dral, and Gabriele Keller

Jacco Krijnen. 2024. InducTeX: A MetaCoq plugin for typesetting inductive
definitions. (2024). Extended abstract presented at the Tenth Interna-
tional Workshop on Coq for Programming Languages.

Jacco O.G. Krijnen, Manuel M.T. Chakravarty, Gabriele Keller, and Wouter
Swierstra. 2024. Translation certification for smart contracts. Science
of Computer Programming 233 (2024), 103051. https://doi.org/10.1016/].
5€ic0.2023.103051

Ramana Kumar, Magnus O Myreen, Michael Norrish, and Scott Owens.
2014. CakeML: a verified implementation of ML. ACM SIGPLAN Notices
49,1 (2014), 179-191.

Pablo Lamela Seijas and Simon Thompson. 2018. Marlowe: Financial con-
tracts on blockchain. In International symposium on leveraging applica-
tions of formal methods. Springer, 356-375.

Xavier Leroy, Sandrine Blazy, Daniel Kastner, Bernhard Schommer, Markus
Pister, and Christian Ferdinand. 2016. CompCert—a formally verified
optimizing compiler. In ERTS 2016: Embedded Real Time Software and
Systems, 8th European Congress.

Pierre Letouzey. 2002. A new extraction for Coq. In International Workshop
on Types for Proofs and Programs. Springer, 200-219.

Nuno P Lopes, Juneyoung Lee, Chung-Kil Hur, Zhengyang Liu, and John
Regehr. 2021. Alive2: bounded translation validation for LLVM. In Pro-
ceedings of the 42nd ACM SIGPLAN International Conference on Program-
ming Language Design and Implementation. 65-79.

John McCarthy and James Painter. 1967. Correctness of a compiler for
arithmetic expressions. Mathematical aspects of computer science 1 (1967).

George C Necula. 1997. Proof-carrying code. In Proceedings of the 24th ACM
SIGPLAN-SIGACT symposium on Principles of programming languages.
106-119.

George C Necula. 2000. Translation validation for an optimizing compiler.
In Proceedings of the ACM SIGPLAN 2000 conference on Programming
language design and implementation. 83-94.

Liam O’Connor, Zilin Chen, Christine Rizkallah, Vincent Jackson, Sidney
Amani, Gerwin Klein, Toby Murray, Thomas Sewell, and Gabriele Keller.
2021. Cogent: uniqueness types and certifying compilation. Journal of
Functional Programming 31 (2021).

Zoe Paraskevopoulou, Aaron Eline, and Leonidas Lampropoulos. 2022. Com-
puting correctly with inductive relations. In Proceedings of the 43rd ACM
SIGPLAN International Conference on Programming Language Design and
Implementation. 966—980.

D. Park, Y. Zhang, and G. Rosu. 2020. End-to-End Formal Verification of
Ethereum 2.0 Deposit Smart Contract. In Computer Aided Verification
(CAV 2020) (LNCS, Vol. 12224).

Michael Peyton Jones, Vasilis Gkoumas, Roman Kireev, Kenneth MacKenzie,
Chad Nester, and Philip Wadler. 2019. Unraveling recursion: compiling an
IR with recursion to System F. In International Conference on Mathematics
of Program Construction. Springer, 414-443.

Simon Peyton Jones and Simon Marlow. 2002. Secrets of the Glasgow
Haskell Compiler inliner. Journal of Functional Programming 12 (July
2002), 393-434.

Benjamin C Pierce. 2002. Types and programming languages. MIT press.

Amir Pnueli, Michael Siegel, and Eli Singerman. 1998. Translation validation.
In International Conference on Tools and Algorithms for the Construction
and Analysis of Systems. Springer, 151-166.

Silvain Rideau and Xavier Leroy. 2010. Validating register allocation and
spilling. In International Conference on Compiler Construction. Springer,
224-243.

Thomas Arthur Leck Sewell, Magnus O Myreen, and Gerwin Klein. 2013.
Translation validation for a verified OS kernel. In Proceedings of the
34th ACM SIGPLAN conference on Programming language design and
implementation. 471-482.

Antal Spector-Zabusky, Joachim Breitner, Christine Rizkallah, and Stephanie
Weirich. 2018. Total Haskell is reasonable Coq. In Proceedings of the 7th
ACM SIGPLAN International Conference on Certified Programs and Proofs.
14-27.

https://doi.org/10.1017/S0956796822000077
https://doi.org/10.1016/j.scico.2023.103051
https://doi.org/10.1016/j.scico.2023.103051

A Layered Certifying Compiler Architecture

A Case Study: Dead Code Elimination

Dead code elimination is an important compiler pass that
is run several times in the simplifier pipeline of the Plutus
compiler. As the Plutus standard libraries are included in a
top-level let binding for every program, dead code elimina-
tion is absolutely necessary to keep code size of the generated
binaries in check. In this section, we illustrate the verification
process for this compiler pass.

The complete verification of each compiler pass is beyond
the scope of the current paper. Instead, we describe the key
definitions and lemmas required to verify a typical compiler
pass completely. The work presented here has been mecha-
nised in the Rocq prover.

A.1 Specification layer

Informally, code is dead when it is not used in the evaluation
of the rest of the program. The Plutus compiler concerns
itself with eliminating dead let bindings by way of a live
variable analysis. Since the let construct is strict by default,
a binding can only be removed if it is known to terminate.
Otherwise, the compiler might transform a non-terminating
program into a terminating one, changing the program’s
semantics.

In Figure 8 we define a predicate on bindings, PURE, that
characterises the subset of bindings that the compiler con-
siders “pure”, i.e., their evaluation is guaranteed to termi-
nate. Strict bindings are pure if they are values. Non-strict
bindings are always considered pure, since no evaluation
happens at its definition. Strict bindings, on the other hand,
can only be removed if they bind a value (such as a lambda
abstraction or constant), this is the same criterion used in
the compiler. Datatype bindings and type bindings do not
require evaluation, hence they are trivially pure.

A detailed account of the specification for the dead code
elimination pass has previously been given by Krijnen et al.
[2024]. It defines a translation relation that is composed of
several syntactic properties, such as well-scopedness and
uniqueness of variable names. In this section, we rephrase
this specification, giving a single binary inductive relation
that immediately captures dead code elimination. Compared
to their work, this definition is more general as it does not
require globally unique variables and the corresponding se-
mantic argument is more direct.

In Figure 8, we sketch the translation relation for dead
code elimination > for terms and > for let-bindings. We
can divide the rules in two categories:

o Compatibility rules Dead code elimination need not
remove any bindings at all. Hence, the identity relation
should be included in our translation relation. For each
language construct, we add a compatibility rule, stating
the translation relation is closed under that construct.
DCE-ApPprLY is a compatibility rule.

FUNARCH ’25, October 12-18, 2025, Singapore, Singapore

t € value

~x:7T=1t € PURE x:T=1 € PURE

dataa =... € PURE a k=T € PURE

s>t
s>t t>t

; T DCE-AprrLy
st>s

BV(b) NFV(let bs’ int') =@
BTV(b) NFTV(let bs’ int') =@

b € PURE let bsint> let bs’ int’
- — DCE-ELim
let b;bsint > let bs’ int
bogb’ let bsint > let bs’ int’
DCE-KEEr

let b;bs int> let b';bs” int’

Figure 8. Translation relation for dead code elimination
(selected rules)

¢ Binding-related rules When relating a let group of
the form let b; bs in t, there are two cases: either the
binding b was removed in the post-term or it was kept.
If the binding has been removed (DCE-Erim), the post-
term should be of the form let bs” in t. This transfor-
mation is only correct under certain conditions: (1) b
is a pure binding, to preserve termination behaviour;
(2) the remainder of the let group is related; (3) the
bound term variables (BV(b)) do not occur freely in the
post-term (FV(let bs’ in t’)), and (4) the same require-
ment on type variables. If the binding is not eliminated
(DCE-KEEP), we only require that (1) there is a related
binding b’ in the post-term and (2) the rest of the let
group is related.

Note that the last two conditions of the DCE-ELium rule in
Figure 8 ensure that any variables bound by the let binding
are unused. It is important to check for the free variables in
the post-term rather than those in the pre-term. Consider a
let-bound variable x that occurs in other dead code:

letx=3inlety=x+x1in 10> 10

Here, x’s definition is dead code while it occurs freely in the
pre-term, but not in the post-term. This distinction ensures
that our relation describes strong live variables.

FUNARCH ’25, October 12-18, 2025, Singapore, Singapore

==
= O N0 0NN U R W N

e e e
0 NG WN

Fixpoint dec_dce (t t'
match t t' with
| Apply s t, Apply s' t' =>
dec_dce s s' & dec_dce t t'
| Let NonRec (b::bs) tb, Let NonRec (b'::bs') tb' =>
if dec_dce_B b b'
then
dec_dce
(Let NonRec bs tb)
(Let NonRec bs' tb')
else
dec_pure b &&
dec_disj (bv b) (fv (Let NonRec bs' tb')) &&
dec_disj (btv b) (ftv (Let NonRec bs' tb')) &&
dec_dce (Let NonRec bs tb) t'

: term) : bool :=

| ..
end

with dec_dce_B : binding -> binding -> bool

Figure 9. Decision procedure for dead code elimination (se-
lected cases)

A.2 Automation layer

In the automation layer, we define the decision procedures
for each of the relations used to specify the dead code elim-
ination pass. Implementating these procedures is usually
quite straightforward: many cases can be read off from the
inference rules, as they are mostly syntax-directed.

In Figure 9 we show a code fragment of the decision pro-
cedures. Those for DisjoINT and PURE straightforwardly
implement their relations, so we omit their implementations
here. The function dec_dce is defined mutually recursive
with dec_dce_B, which decide > and g correspondingly.
Here we show only the cases for function application (line
3, corresponding to rule DCE-AppLY) and non-recursive lets
with a non-empty list of bindings. In the latter case, both
DCE-Erim and DCE-KEEP are applicable, so we first try to
apply the DCE-KEEP rule (line 6); if that fails, we try the
DCE-Erm rule (lines 9-12). The resulting decision proce-
dure is sound and complete with respect to the translation
relation, which we prove by induction on the pre-term:

Lemma 3 (Soundness of decision procedure). dec_Term t t’
true & tp>t.

A.3 Interface Layer

For most passes, the interface layer has the same function-
ality: printing the pre- and post-term in the compiler and
then parsing them into Rocq (Section 2.2). For the dead code
elimination pass however, we extend the interface layer with
further pass-specific behaviour: constructing a virtual inter-
mediate AST.

In the dead code elimination pass, the compiler not only
removes unused bindings, but it will also clean up let groups

Jacco O.G. Krijnen, Wouter Swierstra, Manuel Chakravarty, Joris Dral, and Gabriele Keller

that as a result have no bindings. Although this is a very local
transformation, it clutters the translation relation and the
decision procedure when formulated simultaneously with
dead code elimination. Therefore we decompose the two
transformations and implement another translation relation
(denoted here as >') that solely captures the removal of
empty let groups. The overall specification for this pass then
becomes 3t;. ty > 1 A t; >’ ty. Here, ty and t, are the terms
dumped by the compiler. Within the compiler however, the
AST t;, which may still contain empty let groups, never
exists. Therefore, we construct this tree within Rocq, using
a straightforward recursive function on fy and t,.

Although decomposing a pass in this manner incurs some
more work in the interface layer, it pays off in the automa-
tion and verification layer: another example is the inliner
pass, which includes a form of dead code elimination. By
analogously decomposing that pass and constructing an in-
termediate AST in Rocq, translation relations remain simple
and can be reused across specifications.

A.4 Verification Layer

Finally, we establish that the specification of dead code elim-
ination preserves program semantics. In this section, we
sketch the key lemmas that are necessary to complete the
proof. Before formally proving validator equivalence, we
first prove that the translation relation preserves typing.

Lemma 4 (Dead code preserves typing). Ift >t and A;T +
t:r,then AT Rt @ 7.

Proof. By induction on the derivation of the translation rela-
tion. The case of DCE-ELIMm relies on a weakening property,
since I' and A contains variables that are eliminated in the
post-term, but do not occur freely. m|

For proving validator equivalence, we first prove an obvi-
ous fact about substitution:

Lemma 5 (Substitution of eliminated bindings). Ifx ¢ fv(t),
then for all termss, [s/x|t =t

In other words, substitution behaves as the identity on
unused variables. A similar lemma is needed for type substi-
tution.

Similarly, we prove that pure bindings can be safely added
to a let expression:

Lemma 6 (Purity of PURE bindings). Ifb € PUrk, andletbsint ||

v, then also let b;bs int | v

Finally, we prove a lemma that dead-code elimination
includes the identitiy relation:

Lemma 7 (> is reflexive). For all termst, t > t.

Proof: using the inference rules without DCE-Elim.
With these three lemmas in hand (and with many smaller
facts about substitution), we can prove validator equivalence.

A Layered Certifying Compiler Architecture

As we saw previously in Section 4, this requires first prov-
ing a simulation diagram, in which evaluation commutes
with the translation relation. We do this separately in both
direction, here we demonstrate the forward direction:

Lemma 8 (|} respects > (forward)). Ift >t andt || v, then
there exists v’, such thatt’ || v’ andv > v’

The proof is done by induction on the evaluation relation,
using Lemma 5 for the case where a let binding is eliminated.
Note that because of the mutual family of evaluation rela-
tions (see Appendix C), this proof requires a more elaborate
mutual induction scheme. The backwards direction proceeds
similarly, and uses lemma 6

Theorem 9 (Correctness of dead code elimination). If @; @
t:Data > Unitandt>t/, thent =,q t’

Proof: Let i be a constant of the built-in type ‘Data’, by
Lemma 7, it> i. By rule DCE-APPLy, tit> t'i. Forward direction:
assume ti |} v, then by Lemma 8, there exists a v’ such that
t'i | v’ and v > v’. By type preservation, either v = () = v’
orv = error = v, so we can conclude that v = ¢’. The
backwards direction is symmetric.

FUNARCH ’25, October 12-18, 2025, Singapore, Singapore

B Static semantics of PIR

In the following figures, we have formalised the type and
kind system of PIR. These rules are rendered based on the
Rocq inductives that we use in the formalisation.

e Figure 10 gives the kinding rules

e Figure 11 describes how types can be normalised in a
normal form

e Figure 12 give the typing rules for term constructs in
the PIR language

e Figure 13 gives typing rules for constructor signatures,
and the different type of bindings in a let group.

C Operational semantics of PIR

We have defined the operational semantics of PIR using
a substitution-based reduction. Once again, the rules are
simply based on the Rocq formalisation. First, we define
values as a predicate on terms in Figure 14. This includes
neutral terms for partially-applied built-in functions.

In Figure 15, the rules for evaluation of most term con-
structs are given. For example, the case for function applica-
tion E-APPLY uses substitution after evaluation the argument
to a value (and checking it is not an error). The semantics
also include rules for dealing with errors that halt the pro-
gram immediately: in Figure 16, most language constructs
have a rule explaining how to propagate a thrown error. For
partial applications of built-in functions, we require a set of
rules that deal with neutral values (Figure 17).

We define a separate evaluation relation for both these
non-recursive let bindings (¢ |nonrec v) and recursive let
bindings (¢ |rec ©) in Figure 18; these are embedded with
trivial rules in the main evaluation relation (see bottom of
Figure 15). Both these rules process the individual let bind-
ings in the binding group one by one. The evaluations rules
for both non-recursive (E-LET) and recursive let bindings
(E-LETREC) appeal to these relations.

To evaluate non-recursive let-binding groups, we require
several rules to distinguish strict and non-strict recursive
let bindings, term bindings and type bindings. An example
rule, E-LET-NoNREC-TERMBIND, shows how to define the
semantics of strict term-binding by evaluating the right-
hand-side and substituting the resulting value.

For recursive binding groups, we have a similar evalua-
tion relation, extended with some additional context, keep-
ing track of the entire group of bindings b,. This is needed
as the let bindings may be mutually recursive. We write
bo+ letrechint Unonrec, where by stores to the complete
sequence of let-bindings being processed. The E-LETREC
rule instantiates b, to the complete binding group. The rule
E-LETREC-TERMBIND defines the evaluation of a single (non-
strict) recursive binding, by substituting a single unfolding of
the bound variable’s right hand side, appropriately wrapped
in the binding group.

FUNARCH ’25, October 12-18, 2025, Singapore, Singapore Jacco O.G. Krijnen, Wouter Swierstra, Manuel Chakravarty, Joris Dral, and Gabriele Keller

ArTk
= A+T ArT;
AR =K v Lir 277 K Fun
ArX K ArT > T, %
ArT=zK ArFz(K=3%) = (K= %) AX:KFET s
K-IF1x K-ForarL
Avifix FT :* A+ (VX = K.T) %
built-in type U has kind K AX:K+T K
K-BuiLtin K-Lam
A+rU:K A+ (AX = K;.T) = Ki = K,
A+ T K = K A+T,: K,
1 1 2 2 ! K-App
ArT T Ks
Figure 10. Kinding of types
ollr
nlax=k1r w1 [Tr/x]TrlT L1 T €neutral T,) TP
N-BETA N-Arp
LT 1" L 1T
Lt L1 T 71"
N-Fun N-ForaLrL
oL -1 VX = KT vX = K.T"
TYT" :
v N-Lam xUx N-Var
AX = KT AX = K.T"
F Ul T w " N-IF N-BuiLtin
-1FIX U lll U

ifix FT) ifix F* T
Figure 11. Type normalisation

Received 2025-06-13; accepted 2025-07-21

A Layered Certifying Compiler Architecture FUNARCH ’25, October 12-18, 2025, Singapore, Singapore

T(x)=T TY1" AvTizx TUTH ACx:THrt: TP
T-Var T-LAMABs
ATrx: T ATrH(Ax: Ty t) : T} = T}
A;Fl—tl:T1"—>T2" A;I‘»—tZ:TI" (X =K);;Trt: T
T-ArpLY T-TyABs
ATrtty: T} AT H(AX = Kit) 2 (VX = K.TH)

ATrt (VX KT Av L=k, Tl1r [mr/x|Te b1
AT rHH ALY : T

T-TyINsT

ArT=K ArF:(K=#%= K=+ (FF(AX:KifixF"X) 1"} 1"
T 1" Fl ATHM: TP
A;T+iwrap FT M : ifix F* T"

T-IWRAP

ATFM:ifix FPT" ART* =K (F* (AX = K.ifix F* X)) 7" |} T

T-UNWRAP
A;T Funwrap M : T
has tvoe U builtin F has type T AvrT:x
Cc has (S}
AT = Tom | CoNsTANT rir TB rir T-ERROR
: . “BUILTIN -
;1'+ constant Te AT+ builtinF: T" A;T kerror S: T"

bindS[‘(b) lu bindSF(b)" A; T Fronrec E
A’ = A, binds, (b) I =T, bindsr (b)" NI Ft:T" AFT":x

— T-LET
A;Trletbint: T
bindsr (b) |} bindsr ()" AT Free b
A’ = A, bindsy (b) I’ =T, bindsy (b)" AN;TVvrt:TP ART" x
T-LETREC

AT+ let recbint:T"

Figure 12. Typing of terms

FUNARCH ’25, October 12-18, 2025, Singapore, Singapore Jacco O.G. Krijnen, Wouter Swierstra, Manuel Chakravarty, Joris Dral, and Gabriele Keller

c=x(S—>U)
Uisresulttype AFS:u=*
— W-ConN
Arcc:U
ArT:=x T
AT Rt T
W-TERM
NThp [~]x:T=t
ArT: K W-TypE

ATH X 2 K=T

N=ANY:] N Fc ¢ : constrLastTy(d
= ° v W-DaATA

A;Thpdata (X = K) (Y J) =cwithx

A;T Fnonrec b

b=bb bindsr () |} bindsy(b)"
AT Hy b (A, bindsa (b)); (T, bindsr (b)) Fronrec b

A;T Fronrec b

W-BINDINGSNONREC

AT brec b

Z:b,ﬁ ATy b AT Frec U
A;T Frec E

W-BINDINGSREC

Figure 13. Well-formedness of constructors and bindings

A Layered Certifying Compiler Architecture FUNARCH ’25, October 12-18, 2025, Singapore, Singapore

— V-LaMABS — V-TYABs
Ax : T.t € value AX :: K.t € value

v € value V-IWRAP V-CONSTANT
iwrap F T v € value constant U ¢ € value

(0, nv) € neutral
—— V-NEUTRAL
no € value

(n,t) € neutral

n < arity(builtin F) v € value —isError(v) (succ n,nv) € neutral
NV-BuiLtin NV-AppLy
(n,builtin F) € neutral (n,nv v) € neutral

(succ n, nv) € neutral

(n,nv {T}) € neutral

NV-TyINST

Figure 14. Values and neutral terms

t{o
E-LAMA 4o
-LAMABS . —i
Ax Tt dx Tt b Ax:T. ¢ isError(vy) [02/x] to | 0o E-Appry
t1t2 | 0o
E-TYABsS tl U AX :: K.to [Tz/X] to U [0
.. .. E-TyInsT
AX Kt | AX =K.t Ty} U oo
tHhlo =isError(v to | iwrap F T v
- 0 b o - (e0) E-IWRaAP M E-UNwWRAP
iwrap FT ty | iwrap F T vy unwrap ty || o

E-CONSTANT

constant Uc || constant U ¢

let E int Unonrec © E-LET E klet rec Z intreco E-LETREC

letbint o letrechint o

Figure 15. Big-step operational semantics (basic terms)

E-ERROR t1 JerrorT
tity | error T

error T | error T E-ERROR-APPLY1

t, | error T t; Y errorT
—————— E-ERROR-APPLY2 ———— E-ERROR-TYINST
tit, Jerror T t {I} JerrorT
to | error T’ to | error T
E-ERROR-IWRAP E-ERROR-UNWRAP
iwrap FT ty || error T’ unwrap ty || error T

t; | error T/

— E-ERROR-LET-TERMBIND
let ((x: T=t)),b) inty | error T

Figure 16. Big-step operational semantics (errors)

FUNARCH ’25, October 12-18, 2025, Singapore, Singapore Jacco O.G. Krijnen, Wouter Swierstra, Manuel Chakravarty, Joris Dral, and Gabriele Keller

_ 0,nv v) € neutral 0,no {T}) € neutral
builtinF | builtin F E-NputRatBuTin -) E-NEUTRALAPPLY (T} E-NEUTRALTYINST
no | noo no {T} || no {T}
t1 | noq ty | vy
=({0,t; t;) € neutral) (0,nvy) € neutral —isError(vy) nojiovy | v
E-NEUTRALAPPLYPARTIAL
t1 t2 | 0o
t1 | noy
=({0,¢; {T}) € neutral) (0,nvy) € neutral nv; {T} | vy
E-NEUTRALTYINSTPARTIAL
t {T} U 0o

isFullyApplied(nv; v compute(nvy v3) =0
yopp (nos 02) pute(nos o2) E-NEUTRALAPPLYFULL

noy oy | o

isFullyApplied(nv, {T}) compute(nv, {T}) =v
noy {T} | o

E-NEUTRALTYINSTFULL

Figure 17. Big-step operational semantics (built-in functions)

ti Lo, =isError(vi) [o1/x] (let b in &) | vz

let ((x:T =1),b) inty | vz
[T/X] (et b in ty) Unonrec 01

let (X =K = T),E) into Jnonrec 01

E-LET-NONREC-TERMBIND

E-LET-TYPEBIND

to | vo

— E-LET-NIL
let @ inty | v

bo + (let rec b in |(let rec by int;)/x| to) Urec 01
E-LETREC-TERMBIND

bo k let rec ((~x: T =t),b) in o lrec 01

to J vo

by + let rec @ in ty rec 0o

E-LETREC-NIL

Figure 18. Big-step operational semantics (let-bindings)

	Abstract
	1 Introduction
	2 Layered Certification Methodology
	2.1 Specification Layer
	2.2 Interface Layer
	2.3 Automation Layer
	2.4 Verification Layer
	2.5 Gradual assurance

	3 Certifier
	3.1 The architecture of a certifier
	3.2 Formal pedantic mode

	4 Formalisation
	4.1 Syntax of PIR and PLC
	4.2 Static semantics
	4.3 Dynamic semantics
	4.4 Validator equivalence

	5 Preliminary evaluation
	6 Discussion
	6.1 Related work
	6.2 Further work

	References
	A Case Study: Dead Code Elimination
	A.1 Specification layer
	A.2 Automation layer
	A.3 Interface Layer
	A.4 Verification Layer

	B Static semantics of PIR
	C Operational semantics of PIR

