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Abstract9

We consider a fair division setting of allocating indivisible items to a set of agents. In order to cope10

with the well-known impossibility results related to the non-existence of envy-free allocations, we11

allow the option of selling some of the items so as to compensate envious agents with monetary12

rewards. In fact, this approach is not new in practice, as it is applied in some countries in inheritance13

or divorce cases. A drawback of this approach is that it may create a value loss, since the market14

value derived by selling an item can be less than the value perceived by the agents. Therefore, given15

the market values of all items, a natural goal is to identify which items to sell so as to arrive at16

an envy-free allocation, while at the same time maximizing the overall social welfare. Our work is17

focused on the algorithmic study of this problem, and we provide both positive and negative results18

on its approximability. When the agents have a commonly accepted value for each item, our results19

show a sharp separation between the cases of two or more agents. In particular, we establish a20

PTAS for two agents, and we complement this with a hardness result, that for three or more agents,21

the best approximation guarantee is provided by essentially selling all items. This hardness barrier,22

however, is relieved when the number of distinct item values is constant, as we provide an efficient23

algorithm for any number of agents. We also explore the generalization to heterogeneous valuations,24

where the hardness result continues to hold, and where we provide positive results for certain special25

cases.26
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1 Introduction40

Fair division refers to the algorithmic question of allocating resources or tasks to a set of41

agents according to some justice criteria. It is by now a prominent area within Algorithmic42

Game Theory and Computational Social Choice, [12, Part II], dating back to the origins of43

the civil society. One of the most natural and well studied notions of fairness is envy-freeness44

[18]: a division is envy-free if everyone thinks that her share is at least as valuable as the45

share of any other agent. In the presence of indivisible items however, obtaining an envy-free46

allocation is much more challenging [17], and it is well known that, in the majority of cases,47

envy-free divisions do not exist.48

An approach that has been followed by several works, in order to cope with these49

existential issues, is to focus on relaxations of envy-freeness (for more on this we refer to50

our related work section). Another natural direction that comes into mind is to insist on51

envy-freeness but provide some compensation (e.g., monetary) to the agents who may feel52

unhappy by a proposed division. Such models have been considered in the literature, where53

money is either coming as an external subsidy from a third party or is already part of the54

initial endowment. Under this setting, [20] investigated the question of determining the55

minimum amount of money needed to obtain an envy-free division.56

In this work, we also allow for monetary rewards, but we choose a different approach,57

as already initiated in [22]: we require that the money used to compensate the envious58

agents has to be raised from the set of available items, by selling some of them. This is what59

happens, for instance, in inheritance division. To provide some examples, as stated in Article60

n.9 of the New York Laws - Real Property Actions and Article n.720 of the Italian Civil61

Code, whenever an agreement is not possible, part of the inheritance can be sold through62

an auction. The same practice is also used in divorce settlements. Clearly, envy-freeness63

is then always feasible by selling, if needed, the whole inheritance, and equally sharing the64

proceeds. However, the amount of money raised by this process can be fairly below the65

real value of the sold items for at least two reasons. First, the bidders who participate in66

this type of auctions usually aim at winning items at very low prices; secondly, running an67

auction bears organizational costs which need to be subtracted from the proceeds. Thus, it68

is in the interest of the heirs to determine an envy-free division by selling assets with as little69

value loss as possible. This gives rise to an interesting optimization problem of determining70

which items to sell so as to arrive at an envy-free allocation, with optimal social welfare.71

Algorithmically, this question has been largely unexplored, with the exception of a particular72

case handled in [22].73

1.1 Contribution74

Assuming that we are given the market value of each item as input, i.e., the money that can75

be raised by selling it, we embark on a thorough investigation of algorithmic and complexity76

questions for our problem and provide an almost tight set of results.77

We start in Section 3 with the case where all agents have the same value for each item.78

After establishing NP-hardness, which can be easily shown even for 2 agents, our main results79

exhibit a sharp separation on the approximability between the cases of n = 2 and n ≥ 380

agents. In particular, we prove that, with at least three agents, no polynomial time algorithm81

can obtain a solution that performs better than the one which sells all items, unless P = NP.82

On the other hand, for two agents, we are able to design a polynomial time approximation83

scheme (PTAS), under the assumption that the market value of each item is not smaller84

than half of the common agents’ value. The idea behind the PTAS is to enumerate all partial85
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allocations of the most valuable items, whose number is a constant depending on the desired86

approximation guarantee. Each such partial allocation, which consists of the two bundles87

assigned to the agents together with the bundle of sold items, is then completed processing88

the remaining items by non-increasing value. At every step, the next item is allocated to89

the agent having the lower valued bundle, until we reach a situation where it is possible to90

equalize the two bundles by using the money raised from the already sold items and from91

selling a subset of the not-yet-processed ones. The main technical effort is needed to show92

that, if this condition occurs, then the final allocation can be made envy-free at the expense93

of a negligible loss of social welfare, while, if the condition never occurs, then it is not possible94

to obtain an envy-free solution from the starting partial allocation. Finally, our last result in95

Section 3 is the design of a dynamic programming algorithm which runs in polynomial time96

when the number of distinct item values is constant; this assumption is in line with several97

other recent works on fair-division, e.g., [5, 1].98

In Section 4, we then move to the case where agents can have heterogeneous valuations.99

While all computational barriers from Section 3 carry over to this case as well, we are able100

to obtain two additional positive results. First, we focus on the setting where the values that101

an agent i has for the items lie in an interval of the form [xi, βxi], where β is common across102

all agents. This means, essentially, that each agent attributes the same value to all items,103

up to a factor of β. For a constant number of agents, and for a constant value of β, we are104

able to design again a PTAS. This is very different from the PTAS of Section 3 and is based105

on an appropriate combination of two main ideas. First, by using a linear programming106

formulation, we compute a fractional solution with a bounded number of fractionally assigned107

items. Then, we apply a "reverse" version of the envy cycle elimination algorithm [24], so as108

to decide which items to sell, in addition to the fractional ones. We believe that this could be109

of independent interest for other allocation problems as well. Finally, at the end of Section 4,110

where we drop the assumption on β being constant, we also provide a pseudo-polynomial111

time algorithm.112

Due to lack of space, all omitted proofs are deferred to the full version of this work.113

1.2 Related Work114

In terms of the model that we study, the work most related to ours is [22]. Their main focus115

however is not algorithmic but instead aims at comparing the Price of Fairness with and116

without selling items (defined as the ratio of the optimal social welfare versus the welfare117

attainable at an envy-free allocation). Their work also includes one algorithmic result,118

namely a PTAS, but for a case of only two heterogeneous agents, and under assumptions119

that are incomparable to our results of Section 4, where we consider any constant number of120

heterogeneous agents.121

The use of monetary compensations, as a means to achieve envy-freeness with indivisible122

goods, has also been studied from various other angles in the literature, dating back e.g.,123

to [27, 25]. The models that have been studied most often consider cases where each agent124

receives at most a single good (motivated by rent division) in addition to money. Given an a125

priori fixed amount of money, [2] yields an algorithm for determining an envy-free allocation.126

Improved algorithms were also provided in follow up works in [6, 23], and a more general127

model was considered in [9]. More recently, [20] take an optimization approach of minimizing128

the amount of required money for achieving envy-freeness (and without any restrictions in129

the items given to an agent). The main conceptual difference with our work is that in all130

these models, money is viewed as an already existing subsidy, whereas in our case it comes131

from selling some of the available items, which also leads to welfare loss.132

ESA 2024
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Moving away from monetary rewards, there have been by now various other approaches133

for addressing the lack of envy-free allocations under indivisible items. The most popular one134

is the quest for relaxed notions of fairness, tailored for indivisible items. The notions of envy135

freeness up to 1 good (EF1) [13, 24], and envy freeness up to any good (EFX) [16, 19] are the136

two most representative examples, that have motivated a vast amount of recent works. An137

alternative direction was initiated in [14] where allocations satisfying the EFX criterion (and138

with high Nash welfare) were shown to exist when some items remain unallocated; giving139

birth to fairness with charity. For an overview of these notions and the relevant results, we140

refer the reader to the recent survey [3] and the references therein.141

Finally, another relevant line of works concerns the quantification of welfare performance142

subject to fairness constraints. One way to formalize this is via the Price of Fairness [15],143

defined in the beginning of this section. The Price of Fairness w.r.t. other fairness criteria,144

such as relaxations of envy-freeness was later studied in [8], and further results with tight145

bounds were also given in [7, 21]. We refer again to the survey [3] for a more complete146

overview.147

2 Definitions148

We consider a set [m] := {1, . . . , m} of m indivisible items to be allocated to a set [n] of n149

agents. We assume that for every item j, there is a commonly accepted value v(j), by all150

agents1. The vector v = (v(1), . . . , v(m)) induces an additive valuation function v : 2[m] 7→ N,151

so that for every subset S ⊆ [m], the value of S is v(S) =
∑

j∈S v(j).152

An additional choice, instead of allocating all items to the agents, is to sell some of them153

in exchange of money. The rationale here is that if allocating all items cannot result in a154

fair allocation, we could use monetary compensations from sold items to achieve a more155

acceptable outcome. This may come at some value loss, since selling an item in the market156

can lead to a lower price than the value perceived by the agents. In particular, we assume157

that we are given a market value vector v0 = (v0(1), . . . , v0(m)), so that v0(j) is the monetary158

amount that can be obtained by selling item j, with v0(j) ≤ v(j), for every j ∈ [m]. Viewing159

the vector v0 as inducing an (alternative) additive valuation function, we have that for every160

S ⊆ [m], the money obtained by selling the items of S is equal to v0(S) =
∑

j∈S v0(j).161

Given an instance defined by a tuple (n, m, v, v0), an allocation with items sale is a162

partition of [m] into n + 1 subsets X = (X0, X1, . . . , Xn), such that, for each i ∈ [n], Xi163

is the bundle allocated to agent i and X0 is the set of items which are sold. Hence, the164

money made from X is v0(X0). The social welfare of an allocation with items sale is given165

by SW (X) = v0(X0) +
∑

i∈[n] v(Xi). We will say that an allocation X = (X0, X1, . . . , Xn)166

is an envy-free allocation with items sale (from now on, simply EF-IS), if there exists a split167

of the money v0(X0) into n amounts µ1, . . . , µn, such that, for any two agents i, i′ ∈ [n],168

v(Xi) + µi ≥ v(Xi′) + µi′ . Since this needs to hold for any pair of agents, we can simplify169

the definition of EF-IS as follows. Define the maximum envy of an agent i under an170

allocation X as emax
i (X) = maxi′∈[n]{v(Xi′)} − v(Xi) (note that, as i′ can be also equal to171

i, emax
i (X) ≥ 0). Then, an allocation is EF-IS if and only if172

v0(X0) ≥
∑
i∈[n]

emax
i (X). (1)173

1 We start with this modeling choice, as it is common in inheritance or divorce settlements, that items
such as land properties or cars have a common value to the agents. In Section 4, we explore extensions
beyond this assumption.
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Hence, whenever the above equation holds, it means that there is enough money to compensate174

all agents having non-zero maximum envy.175

We observe that an EF-IS allocation always exists: simply sell all items and share equally176

all the money. We call this allocation, the basic EF-IS allocation. Therefore, this gives rise177

to the natural optimization problem of finding the best EF-IS allocation in terms of social178

welfare. This constitutes the focus of our work, and we define it formally below.179

BEST-EF-IS: Given an instance (n, m, v, v0) on n agents, m items, value vector v and180

market value vector v0, find an allocation X = (X0, X1, . . . , Xn) that is EF-IS and attains181

maximum social welfare.182

3 Hardness and Approximability183

We begin with defining a parameter that plays a fundamental role in the majority of our184

results. Given an instance (n, m, v, v0), let α := minj∈[m]:v(j)>0

{
v0(j)
v(j)

}
∈ [0, 1], be the185

largest discrepancy between the market value and the commonly accepted value of any item.186

We observe the following.187

▶ Observation 1. The basic EF-IS allocation is an α-approximation of BEST-EF-IS.188

3.1 Hardness Results189

We address first two extreme cases of the problem. By Observation 1, BEST-EF-IS is trivial190

when α = 1. On the opposite side, when α = 0, the problem cannot be approximated up to191

any finite factor, even for n = 2.192

▶ Theorem 2. For n = 2 and α = 0, BEST-EF-IS cannot be approximated up to any finite193

factor, unless P = NP.194

For the more interesting cases of α ∈ (0, 1), a direct reduction from Partition yields195

NP-hardness even for n = 2.196

▶ Theorem 3. For n = 2 and α ∈ (0, 1), BEST-EF-IS is NP-hard.197

The next theorem is our main result from this subsection. It implies that the α-198

approximate solution achieved by the basic EF-IS allocation is the best we can hope199

for, when we have at least 3 agents.200

▶ Theorem 4. For any n ≥ 3 and α ∈ (0, 1), BEST-EF-IS cannot be approximated with a201

ratio better than α + ϵ, for any constant ϵ > 0, unless P = NP.202

Proof. Fix n, α and ϵ and let s(α) be the number of bits needed to encode α. We show the203

claim by a gap producing reduction from Partition. Consider an instance of Partition204

I made up of p > max
{

n, s(α), n
(n−2)(1−α) , 2(1−α)

ϵn

}
positive integers w1, . . . , wp, such that205 ∑

j∈[p] wj = 2B. The Partition problem asks to find a subset A ⊆ [p] such that
∑

j∈A wj =206

B. Create an instance I ′ of BEST-EF-IS with m = p + n items such that v(j) = wj for207

each j ∈ [p], v(p + 1) = v(p + 2) = (p− 1)B, and v(j) = pB for each j > p + 2. We call any208

item of value pB a big item, any item of value (p− 1)B an almost big item and the remaining209

items small items. Note that there are n− 2 big items and that
∑

j∈[m] v(j) = npB. The210

vector v0 is defined in such a way that v0(j) = αv(j) for each j ∈ [m]. Note that, by the211

choice of p, the representation of I ′ is polynomial in that of I, for any value of n, α and ϵ.212

The remaining proof is then completed by establishing the following lemma:213

ESA 2024
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▶ Lemma 5. If I admits a partition, we can construct in polynomial time an EF-IS allocation214

X, with SW (X) = npB. Conversely, if I does not admit a partition, any EF-IS allocation215

X satisfies SW (X) < (α + ϵ)npB.216

◀217

Finally, in the following theorem we show that, if the number of agents is not fixed, the218

hardness of approximation holds even if the item values are polynomially bounded in m and219

n.220

▶ Theorem 6. For any α ∈ (0, 1) and ϵ > 0, approximating BEST-EF-IS to better than221

α + ϵ is strongly NP-hard.222

3.2 A PTAS for Two Agents when α ≥ 1/2223

In light of the hardness results shown in the previous subsection, non-trivial approximation224

algorithms, without any further assumptions, are possible only for the case of n = 2 and225

α ∈ (0, 1). This is the focus of this subsection, and our main result is the design of a226

polynomial time approximation scheme (PTAS), under the mild assumption that α ≥ 1/2227

(the market value is never less than 50% of the real value for any item). We feel that this228

assumption is not far from what we would expect in practice. If the items (e.g. in an229

inheritance or divorce case) had a way too low market value, it would not even make sense230

to sell them at all.231

Within this subsection, we use (m, v, v0) to describe an instance, since n = 2. Note that232

the condition described in Equation (1) for an allocation X = (X0, X1, X2) to be EF-IS233

simplifies to v0(X0) ≥ |v(X1)− v(X2)|. Before illustrating our PTAS, we start with a simple234

procedure, called Complete, that will be used as a subroutine of our algorithm. Say that235

an instance is ordered if items are sorted by non-increasing value. Complete works as236

follows: given an ordered instance I = (m, v, v0), an integer q < m and an EF-IS allocation237

(X0, X1, X2) restricted to the first q items of I, it sells items q + 1 and q + 2 (if any), and238

then, for each j ≥ q + 3, item j is assigned to the agent whose bundle, considering only the239

items allocated by Complete so far, has the smaller total value, breaking ties in favour of240

agent 1.241

As shown in the lemma below, Complete helps us in extending an EF-IS allocation of242

an initial subset of items, to an EF-IS allocation over all the items.243

▶ Lemma 7. Given an ordered instance I = (m, v, v0), an integer q < m and an EF-IS244

allocation X = (X0, X1, X2) restricted to the first q items of I, Complete(I, q, X) returns245

in O(m) time an EF-IS allocation for I selling items that are worth a total value of at most246

v(X0) + 2v(q + 1).247

For any ϵ > 0, our algorithm, called SolveBestEF-IS, returns a (1− ϵ)-approximation248

for BEST-EF-IS. The algorithm relies on an initial brute force enumeration of all possible249

allocations with items sale, restricted to the first q items, where q is a constant that depends250

on ϵ. As each item j ∈ [q] can be either assigned to one of the two agents or sold (three251

possible choices), there is a total of 3q possible outcomes. For each outcome, corresponding to252

a partial allocation with items sale X = (X0, X1, X2) restricted to the first q items, function253

Extend is invoked. This function takes an ordered instance I = (m, v, v0), an integer q < m254

and an allocation X = (X0, X1, X2) restricted to the first q items of I. Running it with255

q = q, it checks whether X can be extended to the remaining m− q items, that is, without256

altering the allocation of the first q items, so as to yield an EF-IS allocation for I. If this257
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Algorithm 1 Complete(m, v, v0, q, X0, X1, X2)
Input: an ordered instance I = (m, v, v0), an integer q < m and an EF-IS allocation
(X0, X1, X2) restricted to the first q items of I

Output: an EF-IS allocation for I

1: Y1 ← ∅, Y2 ← ∅
2: if q = m− 1 then
3: Y0 ← {m}
4: else
5: Y0 ← {q + 1, q + 2}
6: end if
7: for j ← q + 3 to m do
8: if v(Y1) ≤ v(Y2) then
9: Y1 ← Y1 ∪ {j}

10: else
11: Y2 ← Y2 ∪ {j}
12: end if
13: end for
14: return (X0 ∪ Y0, X1 ∪ Y1, X2 ∪ Y2)

Algorithm 2 SolveBestEF-IS(m, v, v0)
Input: an instance I = (m, v, v0), with α ≥ 1/2, and a value ϵ > 0

Output: a (1− ϵ)-approximate solution
1: sort the items by non-increasing value
2: q ← min {m, ⌈5(1− α− ϵ)/ϵ⌉}
3: S ← (∅, ∅, ∅), maxWelf ← 0
4: for any allocation with items sale X := (X0, X1, X2) restricted to the first q items do
5: Y := (Y0, Y1, Y2)←Extend(I, q, X)
6: if SW (Y ) > maxWelf then
7: S ← Y , maxWelf ← SW (Y )
8: end if
9: end for

10: return S

is possible, we are able to show that Extend returns an EF-IS allocation which, besides258

the items in X0, it also sells items that are worth a total value of at most 5v(q + 1). If this259

is not possible, we show that the starting guessed allocation X cannot be extended to an260

EF-IS allocation, and so Extend returns the basic EF-IS allocation. Upon enumeration261

of all possible allocations with items sale restricted to the first q items, SolveBestEF-IS262

returns the EF-IS allocation with the largest social welfare.263

The core of SolveBestEF-IS is the function Extend, based on a careful analysis of264

the various cases that may arise. We provide here an overview of how it works and refer the265

reader to full version for further details.266

Lines 1–6. The first part of the algorithm checks whether X is an EF-IS allocation267

restricted to the first q items of I. If this is the case, we invoke Complete to obtain an268

EF-IS allocation for I. In the negative case, if no items are left to extend X (i.e., q = m),269

ESA 2024
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we return the basic EF-IS allocation; otherwise, we conclude that v0(X0) < |v(X1)− v(X2)|270

and define X as the set of the remaining m− q items.271

Lines 7–13. To proceed, line 7 (possibly) swaps X1 and X2 so as to have v(X1) >272

v(X2) + v0(X0). The function now checks whether the items in X can be used to obtain an273

EF-IS allocation out of X. If v(X1) > v(X2) + v0(X0) + v(X), this is not possible and the274

basic EF-IS allocation is returned (lines 8–10). Otherwise, v(X1) ≤ v(X2) + v0(X0) + v(X).275

If this holds at equality, then (X0, X1, X2 ∪X) is an EF-IS allocation and is returned (lines276

11–13).277

Lines 15–27. We now have v(X1) < v(X2) + v0(X0) + v(X). The first goal here is278

to check if selling a single item from X suffices. Thus, in the while-loop at lines 16–23,279

the function considers sequentially all items whose removal from X invalidates inequality280

v(X1) < v(X2) + v0(X0) + v(X). If, by selling item j, enough money can be raised to cover281

the difference between v(X1) and v(X2) + v0(X0) + v(X \ {j}), then the EF-IS allocation282

(X0 ∪ {j}, X1, X2 ∪X \ {j}) is returned (line 18). Otherwise, item j is added to a special283

set of items S (line 20). If the while-loop terminates without returning a solution, we shall284

prove that the only way to possibly extend the guessed allocation X to an EF-IS allocation285

for I is to assign the items of S to X2. Lines 25–27 check whether the new partial allocation286

after the addition of S to X2 is EF-IS restricted to the first q + |S| items. If so, Complete287

is invoked to obtain an EF-IS allocation for I.288

Lines 29–31. If the execution arrives at line 29, it must be either v(X1) > v(X2) + v0(X0)289

or v(X2) > v(X1) + v0(X0). In the latter case, we are essentially in the same situation as290

at the beginning of the function, except for the fact that X has been extended to the first291

q + |S| items. Observe that, since we started with v(X1) > v(X2) + v0(X0) and arrived at a292

situation in which v(X2) > v(X1) + v0(X0), there was some progress in between, i.e., S ̸= ∅).293

Thus, the function sets q = q + |S| and restarts from line 1.294

Lines 33–44. This is the final phase of the algorithm. If we arrive at line 33, we have295

v(X1) > v(X2) + v0(X0) and v(X1) < v(X2) + v0(X0) + v(X). The while-loop at lines296

33–35 keeps adding items to the second bundle and stops as soon as an item j is added to297

X2, such that v(X1) ≤ v(X2) + v0(X0). If this condition holds at equality, we can again298

invoke Complete to obtain an EF-IS allocation for I (lines 36–38). If the execution arrives299

at line 41, we have v(X1) < v(X2) + v0(X0) and v(X1) ≥ v(X2 \ {j}) + v0(X0). At lines300

41–43, the function computes a set of items Y to be sold guaranteeing that the allocation301

(X0 ∪ Y, X1, X2 \ {j}) is EF-IS. We prove that such a set Y does exist, and by invoking302

Complete, the algorithm terminates with an EF-IS allocation for I (line 44).303

The following lemma shows the correctness and complexity of function Extend.304

▶ Lemma 8. For any input (I = (m, v, v0), q, X0, X1, X2), Extend returns an EF-IS305

allocation for I in O(m) time. If there exists an EF-IS allocation for I allocating the first306

q items as in (X0, X1, X2), then an EF-IS allocation selling items that are worth at most307

v(X0) + 5v(q + 1) is returned; otherwise, the basic EF-IS allocation is returned.308
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Algorithm 3 Extend(m, v, v0, q, X0, X1, X2)
Input: an ordered instance I = (m, v, v0) with α ≥ 1/2, a positive integer q < m and an
allocation X = (X0, X1, X2) restricted to the first q items of I

Output: an EF-IS allocation for I

1: if v0(X0) ≥ |v(X1)− v(X2)| then
2: return Complete(I, q, X)
3: else if q = m then
4: return ([m], ∅, ∅)
5: end if
6: X ← [m] \ (X0 ∪X1 ∪X2)
7: swap X1 and X2 so that v(X1) > v(X2) + v0(X0)
8: if v(X1) > v(X2) + v0(X0) + v(X) then
9: return ([m], ∅, ∅)

10: end if
11: if v(X1) = v(X2) + v0(X0) + v(X) then
12: return (X0, X1, X2 ∪X)
13: end if
14: % if we reach this point, then v(X1) > v(X2)+v0(X0) and v(X1) < v(X2)+v0(X0)+v(X)

15: j ← q + 1, S ← ∅
16: while j ≤ m && v(j) ≥ v(X2) + v0(X0) + v(X)− v(X1) do
17: if v0(j) ≥ v(X1)− v(X2)− v0(X0)− v(X) + v(j) then
18: return (X0 ∪ {j}, X1, X2 ∪X \ {j})
19: else
20: S ← S ∪ {j}
21: end if
22: j ← j + 1
23: end while
24: X2 ← X2 ∪ S, X ← X \ S

25: if v0(X0) ≥ |v(X1)− v(X2)| then
26: return Complete(I, q + |S|, X)
27: end if
28: % if we reach this point, then either v(X1) > v(X2) + v0(X0) or v(X2) > v(X1) + v0(X0)

29: if v(X2) > v(X1) + v0(X0) then
30: set q ← q + |S| and goto line 1
31: end if
32: % if we reach this point, v(X1) > v(X2) + v0(X0) and, by line 14 and the fact that in

between items are only moved from X to X2, v(X1) < v(X2) + v0(X0) + v(X)
33: while (v(X1) > v(X2) + v0(X0)) do
34: X2 ← X2 ∪ {j}, j ← j + 1
35: end while
36: if (v(X1) = v(X2) + v0(X0)) then
37: return Complete(I, j − 1, X)
38: end if
39: Y ← {j − 1}, X2 ← X2 \ {j − 1}
40: % if we reach this point, then v(X1) < v(X2) + v0(X0) and v(X1) ≥ v(X2 \{j}) + v0(X0)

41: while (v0(Y ) < v(X1)− v(X2)− v0(X0)) do
42: Y ← Y ∪ {j}, j ← j + 1
43: end while
44: return Complete(I, j − 1, X0 ∪ Y, X1, X2) ESA 2024
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To prove Lemma 8, we need first some auxiliary results that establish some basic properties309

of the whole algorithm.310

▶ Lemma 9. Suppose Extend reaches line 24, after constructing the set of items S, via311

line 20. If there exists an EF-IS allocation for I allocating the first q items of [m] as in312

(X0, X1, X2), then it allocates the first q + |S| items of [m] as in (X0, X1, X2 ∪ S).313

▶ Lemma 10. The while-loop at lines 33–35 always terminates; moreover, the while-loop at314

lines 41–43 always terminates returning a set Y such that v(Y ) ≤ 3v(q + 1).315

Proof of Lemma 8. First of all, by Lemma 10, we are guaranteed that Extend always316

terminates. Moreover, each returned allocation is always EF-IS either by definition, or by317

inspection combined with Lemma 7. Regarding the complexity, it is not difficult to see that318

Extend can be executed in O(m) time. In fact, the first 13 lines of the function, apart from319

basic, constant-time operations, require the computation of quantities such as X, X2 ∪X,320

v(X0), v(X1), v(X2), v(X), taking O(m) time, and the invocation of Complete which, by321

Lemma 7, needs O(m) time. From line 14 onwards, the function essentially processes all322

items sequentially and, for each processed item, constant-time operations are performed. The323

only non-constant-time operation is the invocation to Complete which requires O(m) and324

is performed only once during any execution of Extend.325

Now, let us bound the value of sold items in any returned solution other than the basic326

one. The solution returned at line 2 sells items that are worth a total value of at most327

v(X0) + 2v(q + 1), due to Lemma 7; the one returned at line 12 sells items that are worth328

a total value of v(X0); that returned at line 18, sells items that are worth a total value of329

v(X0) + v(j) ≤ v(X0) + v(q + 1); those returned at lines 26 and 37, sell items that are worth330

in total at most v(X0) + 2v(q + 1), by Lemma 7; finally, the one returned at line 44 sells331

items that are worth a total value of at most v(X0) + 5v(q + 1), by Lemmas 7 and 10.332

We are left to show that Extend returns the basic EF-IS allocation only if no EF-IS333

allocation extending X = (X0, X1, X2) exists. Extend returns the basic EF-IS allocation334

only at lines 4 and 9. Observe that, when this happens, there is no chance of getting an335

EF-IS allocation from X. This partial allocation, in fact, is either given in input, or obtained336

from the input after possible repeated additions of the special set S of items to X2, at line337

24. By Lemma 9, these additions do not prevent the extension of the current allocation to338

an EF-IS one. So, whenever we reach the point that Extend has to return the basic EF-IS339

allocation, it is because it has arrived at an allocation which cannot be extended to become340

EF-IS and such an allocation has been obtained by performing unavoidable choices only. ◀341

Putting everything together, we can show our main result.342

▶ Theorem 11. There is a PTAS for BEST-EF-IS with two agents when α ≥ 1/2.343

Proof. Fix an instance I = (m, v, v0) of BEST-EF-IS. By Lemma 8, we get that, for any
0 < ϵ < 1− α, SolveBestEF-IS returns an EF-IS allocation in O(3qm + m log m) time,
with q = O(1/ϵ). To show the approximation guarantee, let O be the optimal allocation
of the problem, and let (X∗

0 , X∗
1 , X∗

2 ) be the partial allocation corresponding to O and
restricted to the first q items. Set X

∗ := [m] \ (X∗
0 ∪X∗

1 ∪X∗
2 ). When SolveBestEF-IS

calls Extend with input I, q and (X∗
0 , X∗

1 , X∗
2 ), it receives an EF-IS allocation S where,

additionally to X∗
0 , a set of items Z ⊆ X

∗ is sold and such that v(Z) ≤ 5v(q + 1), by Lemma
8. We derive SW (S) = v(X∗

1 ∪ X∗
2 ) + v0(X∗

0 ) + v0(Z) + v(X∗ \ Z). On the other hand,
SW (O) ≤ v(X∗

1 ∪ X∗
2 ) + v0(X∗

0 ) + v(Z) + v(X∗ \ Z). So, the approximation guarantee
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achieved by S is at least

v(X∗
1 ∪X∗

2 ) + v0(X∗
0 ) + v0(Z) + v(X∗ \ Z)

v(X∗
1 ∪X∗

2 ) + v0(X∗
0 ) + v(Z) + v(X∗ \ Z)

≥ v(X∗
1 ∪X∗

2 ) + v0(X∗
0 ) + αv(Z) + v(X∗ \ Z)

v(X∗
1 ∪X∗

2 ) + v0(X∗
0 ) + v(Z) + v(X∗ \ Z)

.

This value is minimized when the common terms are as small as possible, while v(Z) is as344

large as possible. This is achieved when v(Z) = 5v(q + 1), X∗
1 = X∗

2 = X
∗ \ Z = ∅ and345

X∗
0 = [q], with v(X∗

0 ) = qv(q + 1). We derive that the approximation guarantee achieved by346

S is at least q+5α
q+5 ≥ 1− ϵ, for each q ≥ 5(1−α−ϵ)

ϵ . As SolveBestEF-IS returns the EF-IS347

allocation with the highest social welfare, among the ones returned by Extend, the claim348

follows. ◀349

▶ Remark 12. At a first glance, it seems that the value of α plays a major role only within350

function COMPLETE. This function can be easily extended to any α ≤ 1/k, with k being351

an integer such that k > 2, by selling the next k items, rather than simply the next two352

ones. However, the fact that α ≥ 1/2, is fundamental to prove that the while loop at lines353

41–43 of function EXTEND always terminates (see second part of the claim of Lemma 10).354

So, in order to extend the PTAS below the threshold 1/2, additional arguments need to be355

elaborated.356

3.3 An Exact Algorithm for a Small Number of Distinct Values357

In this subsection, we consider the case in which there is a small number of distinct item values.358

In particular, we assume that there are T distinct item values, say w1 < w2 < . . . < wT ,359

and that, for any s ∈ [T ], there are ms items of value ws. Obviously, it must hold that360 ∑
s∈[T ] ms = m. We design a dynamic programming algorithm that solves BEST-EF-IS in361

polynomial-time when T is a constant.362

▶ Theorem 13. Let T be the number of distinct item values. BEST-EF-IS can be solved in363

time O(n(m/T )2T T ).364

4 Extensions to Heterogeneous Agents365

In this section, we consider a generalization of our model to the case where the items may not366

have the same value for all agents. The most natural extension is the one in which each agent367

i has her own additive valuation function vi, so that vi(j) is the value of agent i for item j368

and vi = (vi(j))j∈[m] denotes the vector of all item values for agent i. Under heterogeneous369

valuation functions, we need to be more careful about the market value vector v0. As also370

done in [22], we assume that for every item j, the market value satisfies v0(j) ≤ minivi(j).371

We view this as a minimal assumption, that should hold so that no agent can have more372

value by selling an item rather than by owning it. Furthermore, we assume w.l.o.g. that373

the considered allocation problems do not contain any dummy item j with vi(j) = 0 for all374

i ∈ [n].375

The following result, due to [20] but recast in our framework, shows how to determine in376

polynomial time if a given allocation with items sale is EF-IS.377

▶ Lemma 14 ([20]). Given an allocation problem (n, m, (vi)i∈[n], v0) with heterogeneous378

valuations, let X = (X0, X1, . . . , Xn) be a an allocation with items sale of [m]. One can379

check in O(mn + n3) time if X is EF-IS.380
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Let α := mini∈[n],j∈[m]:vi(j)>0

{
v0(j)
vi(j)

}
∈ [0, 1] be the parameter defined similarly as in381

Section 3. As before, the basic EF-IS allocation is a feasible solution and trivially constitutes382

an optimal one when α = 1. Moreover, the hardness results of Section 3.1 continue to hold383

under heterogeneous valuations. Therefore the problem is NP-hard, and with 3 agents or more,384

there is no approximation factor better than α. Nevertheless, we are still able to provide some385

positive results under certain assumptions. In particular, let β := maxi∈[n]
maxj∈[m] vi(j)

minj∈[m]:vi(j)>0 vi(j) ,386

denote the maximum ratio between the highest and the lowest (non-zero) valuable item of387

any agent. We obtain below a PTAS, if n, β and 1/α are bounded by a constant. This can388

be seen as generalizing the PTAS of Section 3.2, even beyond the two agent case, but only389

with a constant β. The technique that we use however is quite different from the PTAS of390

Section 3.2. Furthermore, we also obtain an exact pseudo-polynomial time algorithm for the391

case in which the number of agents is constant, without any further assumption.392

4.1 A PTAS for Few Heterogeneous Agents with β = O(1) and α = Ω(1)393

Within this section we assume that n, β and 1/α are bounded by some constant. Moreover,394

given two integers k, n, we denote by [n]k the set {k, k + 1, . . . , n}, if k ≤ n and the empty395

set otherwise.396

In Algorithm 4, we provide the pseudo-code of our PTAS, which we call Cut&Sell. We397

provide here a brief overview and intuition of how it works. For a fixed ϵ > 0, we parameterize398

the analysis with a constant, but sufficiently large integer q (defined in Algorithm 4), with399

q = O(1/ϵ). If m ≤ q the algorithm computes, via a polynomial-time brute-force search, an400

EF-IS allocation X that maximizes the social welfare. Otherwise, when m > q, it executes401

the following procedures:402

Cut Procedure: This procedure computes a fractional allocation z = (zi,j)i∈[n],j∈[m], with403

zi,j denoting the fraction of j assigned to i, that maximizes the social welfare, is envy-free,404

and cuts at most n2 − n + 1 items into fractional pieces. To do this in polynomial time,405

one can resort to linear programming. In particular, we have that the optimal solution406

of the following linear program in variables (zi,j)i∈[n],j∈[m] corresponds to a social welfare407

maximizing fractional allocation, subject to envy-freeness:408

max SW (z) :=
∑

i∈[n],j∈[m]

vi,jzi,j

s.t.
∑

j∈[m]

vi,jzi,j ≥
∑

j∈[m]

vi,jzh,j , ∀i, h ∈ [n], i ̸= h

∑
i∈[n]

zi,j = 1, ∀j ∈ [m]

zi,j ≥ 0, ∀i ∈ [n], j ∈ [m]. (2)409

By Lemma 15 below, we can efficiently find the desired optimal solution of linear program410

(2).411

▶ Lemma 15. An optimal solution z = (zi,j)i∈[n],j∈[m] of linear program (2) that satisfies412

|{j ∈ [m] : ∃i ∈ [n], 0 < zi,j < 1}| ≤ n2 − n + 1 can be computed in polynomial time.413

Sell Procedure: Let X0 be the set of items that are assigned fractionally in z. We first414

sell X0 and derive the (integral) allocation with items sale X = (X0, X1, . . . , Xn), where415

each j in Xi is assigned integrally to i in z. Now, given the allocation X ′ = (X1, . . . , Xn)416



Bilò et al. 92:13

restricted to the unsold items of X, the envy-graph of X ′ is a graph GX′ = (V, EX′) having417

V = [n], and containing an edge (i, h) ∈ [n]2 if and only if agent i is envious of h (that is,418

vi(Xi) < vi(Xh)). The algorithm permutes the bundles in such a way that the resulting419

envy-graph of the allocation restricted to unsold items is acyclic. This step is implemented420

by a sub-routine called EnvyCycleElimination introduced in [24] (we refer the reader421

to such work for a detailed description of the sub-routine). Then, the algorithm alternates422

among the following two steps, until the obtained allocation X is EF-IS: (i) It picks a sink423

i ∈ [n] in the resulting (acyclic) envy-graph, i.e., an agent that is not currently envious of424

anyone. Then, the algorithm removes and sells an arbitrary good j from the bundle of i425

(i.e., j is added to X0). (ii) It applies again EnvyCycleElimination, so that the resulting426

envy-graph of the allocation restricted to unsold items becomes acyclic.427

We shall prove that at the end, the algorithm terminates with an EF-IS allocation and428

with the desired approximation.429

▶ Theorem 16. There is a PTAS for BEST-EF-IS with n heterogeneous agents, when n, β430

and 1/α are all O(1).431

Proof Sketch. We first argue about the complexity of the algorithm. If m ≤ q, Cut&Sell432

enumerates (n + 1)m ≤ (n + 1)q = O(1) distinct allocations with item sales; for each of them,433

it verifies in polynomial time if it is EF-IS (by Lemma 14), and finally returns the one of434

maximum welfare. The case m > q is polynomial as it requires to find an optimal fractional435

allocation via linear programming and applies at most O(m) times the envy-cycle-elimination436

procedure.437

The technically more involved part is to show that Cut&Sell guarantees a (1 − ϵ)-438

approximation. If m ≤ q, an optimal solution is returned by enumeration. If m > q,439

Cut&Sell first computes an optimal fractional envy-free-solution z, whose social welfare440

SW (z) is used as an optimality benchmark for BEST-EF-IS. Then, by using the hypothesis441

that n, 1/α, β are bounded by a constant, we show that the items with positive value added442

to X0 during the Sell procedure, before reaching an EF-IS allocation, have low value443

compared to SW (z). This fact is used to show that the allocation returned by the algorithm444

is a (1− ϵ)-approximation. ◀445

4.2 A Pseudo-Polynomial Time Algorithm for Few Heterogeneous Agents446

Our final result is that for a constant number of agents, BEST-EF-IS admits a pseudo-447

polynomial time algorithm. Considering the hardness result provided in Theorem 6, a448

limitation on the number of agents is necessary to obtain a pseudo-polynomial time algorithm,449

unless P = NP.450

▶ Theorem 17. BEST-EF-IS can be solved in O(mn2V n2) time for heterogeneous valuations451

and in O(mnV n) time for identical ones, where V = maxi∈[n]{vi([m])} denotes the maximum452

value for the entire set of items.453

5 Conclusions and Future work454

Our work explores from an algorithmic perspective the model of fair division of indivisible455

items initiated in [22], and provides an almost complete picture on its status. This model456

considers the possibility of selling items in order to compensate envious agents in a proposed457

allocation.458
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Algorithm 4 Cut&Sell(m, v, v0)
Input: ϵ > 0 and an instance I = (m, v, v0) with heterogeneous agents, α ∈ (0, 1), β ≥ 1
and vi(j) > 0 for any i ∈ [n], j ∈ [m]

Output: an EF-IS allocation for I

1: q ←
⌈
n(n2 + 1)β (β − α) /(ϵα2)

⌉
2: if m ≤ q then
3: Find the best EF-IS allocation by enumeration
4: else
5: % Cut Procedure
6: z = (zi,j)i∈[n],j∈[m] ← an optimal envy-free fractional allocation, in which at most

n2 − n + 1 items are cut into two or more fractional pieces.
7: % Sell Procedure
8: X0 ← {j ∈ [m] : ∃i, s.t. zi,j ∈ (0, 1), i ∈ [n]}
9: for i = 1, . . . , n do

10: Xi ← {j ∈ [m] : zi,j = 1}
11: end for
12: X = (X0, . . . , Xn), X ′ ← (X1, . . . , Xn)
13: X ′ ← EnvyCycleElimination(X ′)
14: while X is not EF-IS do
15: Let i ∈ [n] such that vi(Xi) ≥ vi(Xh) for each h ∈ [n] (break ties arbitrarily)
16: Let j ∈ Xi (break ties arbitrarily)
17: Xi ← Xi \ {j}, X0 ← X0 ∪ {j}
18: X ′ ← (X1, . . . , Xn)
19: X ′ ← EnvyCycleElimination(X ′)
20: end while
21: end if
22: return X

Despite the large amount of research work devoted in the last years to the study of459

relaxed notions of envy-freeness, the approach of items sale has remained largely unexplored.460

This may look strange since, although relaxed notions of envy-freeness such as EFX and461

EF1 provide theoretically interesting and elegant solutions to the non-existence of envy-free462

allocations, from a practical point of view there are many cases in which these solutions463

are highly unfair (think, for instance, of the famous basic case of a high-valued item and464

two agents). A possible reason for this under-consideration might come from the intrinsic465

difficulty of the problem, as witnessed by the strong computational barriers we proved in466

Subsection 3.1. However, we have also shown that, under some (in some cases even mild)467

assumptions, interesting positive results are possible.468

An interesting open question that arises is whether we can extend the existence of a469

PTAS for two agents, in the case of α ∈ (0, 1/2) and identical valuations, and also in the470

case of arbitrary α and heterogeneous valuations (without further assumptions on other471

parameters). Furthermore, it would be nice to study the effects of items sale for other variants472

of fair allocation problems, such as for other notions of fairness (e.g., proportionality, EFX473

or maximin shares) or for more general valuations beyond additivity, or for problems with474

additional constraints (e.g., under connectivity constraints [10, 11, 26]). Finally, it would be475

interesting to study the case of strategic agents, as in [4], who may misreport their valuations476

to increase their utility.477
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