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Abstract—Smart contracts manage valuable assets, and their
immutability hinders bug fixing. Therefore, pre-deployment ver-
ification and validation are critical. In fact, auditing has become
mandatory in the pipeline of smart contract development. Au-
ditors usually combine manual inspection with automated tools
in their auditing work, looking for issues that may be domain
dependent (i.e., pertaining to the correct implementation of
requirements—which are often informal, partial, and implicit) or
independent (e.g., reentrancy, overflow, etc.). To identify domain
dependent issues, it is important to understand the non-trivial
behavior of the implementation over sequences of calls made
by callees playing different roles in the contract. In this paper,
we propose a novel approach that combines predicate abstraction
with modal transition systems to build abstractions that can help
auditors in the smart contract validation process. The required
inputs are a set of predicates provided as code and, optionally,
constraints over smart contract function parameters. The output
is a modal transition system that captures the contract’s behavior.
We report on a prototype that builds modal abstractions and an
evaluation on two established benchmarks where we identified
four previously unreported issues.

Index Terms—Smart contract, predicate abstraction, modal
transition systems

I. INTRODUCTION

Blockchain technology enables transparency, immutability,
and traceability of network transactions [29]. The inherent
immutability of blockchains contrasts significantly with tradi-
tional software systems. Once a smart contract is deployed on
the blockchain, no modification of its source code is possible.
While this feature enhances security and transparency, it also
presents a challenge by precluding the correction of defects in
deployed smart contracts. Additionally, once a smart contract
transaction is recorded, it becomes irreversible. Consequently,
ensuring the validation and verification of smart contracts
before deployment is crucial. A defect that can be easily fixed
can lead to serious attacks, potentially resulting in significant
financial losses. For instance, a flaw in the DAO smart contract
[2] enabled attackers to steal 60 million USD in 2016 [33].

Smart contract errors can be broadly categorized into two
types. The first type covers vulnerabilities that are common

across different smart contracts. These include well-known
issues such as overflow/underflow vulnerabilities. The second
type, which this paper focuses on, are business logic errors,
i.e., discrepancies between the intended behavior and the
actual implementation of the smart contract’s business logic.

A widely adopted industrial practice is to have smart
contracts audited by specialized third-party security firms,
often engaging multiple independent companies for thorough
reviews. While these audits leverage automated and semi-
automated tools (e.g., [18], [12], [38], [23], [37], [35]), manual
tasks such as code inspection and informal documentation
review play a significant role. Recent research [24] highlights
the potential for developing tools to enhance error detection
in smart contracts, but it cautions that many critical bugs may
not be addressed purely through automation. Furthermore, in
[14] authors conclude that business logic related bugs remain
inadequately addressed by existing security tools.

In line with these insights, we address the challenge of
contract validation by focusing on business logic errors. Our
approach, unlike traditional methods requiring formalization
of requirements, leverages auditors’ expertise. Auditors can
compare their understanding of the intended smart contract
behavior with an automatic and formal abstraction of the
implementation-under-analysis to identify inconsistencies.

In [22], the authors use predicate abstraction to construct
a finite labeled transition system from the source code of
smart contracts, over-approximating the valid sequences of
function calls applicable to the contract. In these abstractions,
a transition labeled f between two abstract states s1 and s2
means that there exists at least one concrete state in s1 on
which f can be called with some suitable actual parameter
values such that it terminates successfully in a concrete state in
s2. These abstractions allow auditors (or other stakeholders) to
scrutinize the behavior of the smart contract, identify defects,
and enhance confidence in its alignment with independent
manually crafted requirements. These abstractions can reveal,
for example, a defect that prevents non-winning bidders from
withdrawing their deposits upon auction finalization by high-
lighting the absence of a withdraw transition from an abstract



state that represents the auction being closed. Similarly, they
may reveal a fault that allows bidding once closed.

In [22] the existence of an endAuction transition from a
closed auction denotes that it may be possible for the benefi-
ciary to receive funds committed by the auction winner, rather
than that it must be possible for the beneficiary to receive
their funds. Indeed, [22] defines what are referred to as may
abstractions, while an abstraction that captures the guarantee
for the beneficiary requires including must abstractions.

In this paper we propose the use of modal abstractions [26]
to support smart contract validation. Specifically, we introduce
must transitions, which model situations that a function can
always be invoked and execute successfully from an abstract
state. This contrasts with may transitions, which model that a
function can be invoked and executed successfully depend-
ing on the specific concrete state of the abstract state of
the contract. These transitions correspond to those used in
[22]. Additionally, we introduce the concept of constraint
transitions, which allows for constraining the existential quan-
tification of parameters to specific user-defined values. For
instance, by restricting withdrawals to a specific user (e.g.,
msg.sender = 0xFA0...), a resulting may-must abstraction
might illustrate that the bidder 0xFA0... is guaranteed to
be able to withdraw their funds if they lose the auction.

In this work, we assume that predicates are provided by
auditors, who extract them from the contract code (e.g.,
require clauses) or by leveraging their domain expertise
in blockchain. Notably, the extraction of predicates from
require clauses could be fully automated in future versions.
To the best of our knowledge, this is the first approach that uses
modal abstractions to validate smart contract implementations.
The novel use of modalities and constraints are in line with the
Smart Contract Security Verification Standard [6], particularly
supporting activities related to two of its key areas: G4.
Business Logic and G5. Access Control.

Summarizing, the contributions of this paper are (i) a
novel modal abstraction for smart contract validation, (ii) a
prototype for building modal abstractions, and (iii) an evalu-
ation conducted on two established benchmarks, to determine
empirically whether the modal and constraint features that we
introduce contribute to the validation of smart contracts.

The remainder of this paper is organized as follows. In
Section II, we introduce a motivational example showcasing
the current limitations. Section III presents the basics on
predicate abstraction. Section IV describes the formal model.
In Section V, we discuss the evaluation of our approach,
followed in Section VI by a discussion of threats to validity. In
Section VII, we discuss related work and finally Section VIII
concludes and presents future work.

II. MOTIVATING EXAMPLE

In this section, we illustrate the limitations of the may
abstractions proposed in [22] for smart contract validation and
the advantages that using modal abstractions can provide for
the same goal. We use an auction smart contract (Figure 1),
inspired by [37] and implemented in Solidity [1].

A. An Auction Smart Contract
The auction smart contract shown in Figure 1 allows users

to place bids within a specified bidding period and provides
functionality for withdrawing funds and finalizing the auction.
The contract maintains several state variables, including a
mapping (pending) that tracks the bids received that are
non-winning and will have to be refunded once the auction
ends. The constructor function initializes the auction-
Start, biddingTime, beneficiary, owner and ownerFee variables
when the contract is deployed. The beneficiary will receive the
highestBid minus a fee, which is transferred to the owner. The
Withdraw function allows bidders to withdraw their funds
if they were outbid once the bidding period has concluded.
The Bid function allows users to place bids by sending an
amount of Ether. This function checks that the bidding period
has not ended, the bid amount is higher than the current
highest bid, and the sender is neither the contract owner
nor the beneficiary. Finally, Bid updates the state variables
highestBidder and highestBid with the new bid value and
sender, and the mapping pending with the previous highest bid
from the previous bidder. The AuctionEnd function, enabled
only when the bidding period has ended and only callable by
the beneficiary, transfers as much Ether as the highest bid
to the beneficiary account and the fee (set at deployment)
to the owner. In the implementation shown in Figure 1 we
introduced a bug deliberately in the AuctionEnd function:
the instruction in Line 44 transfers the full highestBid amount
instead of highestBid - feeAmount. As a result, the feeAmount
is effectively stolen from the non-winning bidders.

B. May Abstractions
Figure 2a depicts the Labeled Transition System (LTS)

generated by [22] for the auction contract. Each abstract
state characterizes the set of concrete smart contract states
that satisfy a collection of predicates defined by the require
clauses of the public methods. The predicates are labeled
bid, withdraw, and auctionEnd. The bid predicate holds when
the bidding period is open and has not ended: bid(c) def

=

c.auctionStart + c.biddingTime > block.number ∧ ¬c.ended. The
withdraw predicate holds if the bidding period is closed
and at least one user has funds in the pending mapping:
withdraw(c) def

= c.auctionStart + c.biddingTime ≤ block.number ∧
∃a : Address · c.pending[a] > 0.

The auctionEnd predicate holds if the bidding period is
closed and not finalized: auctionEnd(c) def

= c.auctionStart +

c.biddingTime ≤ block.number ∧ ¬c.ended.
The abstract state {bid} indicates that only the bid predicate
holds. The state {} represents an abstract state where none of
the predicates hold. In Figure 2a, state {} shows a transition la-
beled with τ , which is always enabled because it represents the
passage of time (by modeling the increase of block.number).
Further details will be provided in the next section.

A transition labeled f between two abstract states s1 and
s2 means that there exists at least one concrete state c in
s1 and values for the actual parameter values of function f
such that, when executing f in state c, the execution ends



1 c o n t r a c t Auc t ion {
2 u i n t a u c t i o n S t a r t ;
3 u i n t b idd ingTime ;
4 address payable b e n e f i c i a r y ;
5 bool ended = f a l s e ; address payable owner ;
6 u i n t h i g h e s t B i d = 0 ; u i n t ownerFee = 0 ;
7 address payable h i g h e s t B i d d e r = address ( 0 ) ;
8 mapping ( address => u i n t ) pend ing ;
9 c o n s t r u c t o r ( u i n t a u c t i o n S t a r t , u i n t biddingTime ,

10 address payable b e n e f i c i a r y , u i n t ownerFee ) p u b l i c {
11 a u c t i o n S t a r t = a u c t i o n S t a r t ;
12 b idd ingTime = bidd ingTime ;
13 b e n e f i c i a r y = b e n e f i c i a r y ;
14 owner = msg . sender ;
15 ownerFee = ownerFee ;
16 }
17 f u n c t i o n Withdraw ( ) p u b l i c {
18 r e q u i r e ( pend ing [ msg . sender ] > 0) ;
19 u i n t end = a u c t i o n S t a r t + b idd ingTime ;
20 r e q u i r e ( block . number >= end ) ;
21 u i n t pr = pend ing [ msg . sender ] ;
22 pend ing [ msg . sender ] = 0 ;
23 msg . sender . t r a n s f e r ( p r ) ;
24 }

25 f u n c t i o n Bid ( ) p u b l i c payable {
26 u i n t end = a u c t i o n S t a r t + b idd ingTime ;
27 r e q u i r e ( end > block . number ) ;
28 r e q u i r e ( msg . sender != owner ) ;
29 r e q u i r e ( msg . sender != b e n e f i c i a r y ) ;
30 r e q u i r e ( ! ended ) ;
31 r e q u i r e ( msg . va lue > h i g h e s t B i d ) ;
32 pend ing [ h i g h e s t B i d d e r ] += h i g h e s t B i d ;
33 h i g h e s t B i d d e r = msg . sender ;
34 h i g h e s t B i d = msg . va lue ;
35 }
36 f u n c t i o n Auct ionEnd ( ) p u b l i c {
37 u i n t end = a u c t i o n S t a r t + b idd ingTime ;
38 r e q u i r e ( block . number >= end ) ;
39 r e q u i r e ( msg . sender == b e n e f i c i a r y ) ;
40 r e q u i r e ( ! ended ) ;
41 ended = t rue ;
42 u i n t feeAmount = h i g h e s t B i d * ownerFee / 100 ;
43 owner . t r a n s f e r ( feeAmount ) ;
44 b e n e f i c i a r y . t r a n s f e r ( h i g h e s t B i d ) ;
45 //possible fix
46 //beneficiary.transfer(highestBid-feeAmount);
47 }
48 }

Fig. 1: Solidity Auction smart contract example

successfully in a concrete state c′ in s2. A transition labeled f
gives information about behavior that may be possible in the
abstract state for some parameters of f.

This abstraction enables an auditor to examine the behavior
of the smart contract, thereby revealing crucial details about its
underlying protocol. For instance, in state {bid}, it becomes
evident that bidding is allowed until a specific time. The time
progression (denoted by the τ ) disables the bid method. Once
the auction concludes, bidding is permanently disabled, as the
bid transition is no longer feasible in subsequent states. These
insights, derived from the abstraction, align with the mental
model an auditor might have of the requirements.

Unfortunately, the information in this may-abstraction is
too coarse for human auditors to expose the bug we have
introduced in auctionEnd. After fixing the bug using Line 46
instead of 44, the abstraction remains identical. Indeed, by
observing the abstraction, the auditor may incorrectly increase
their confidence that auctionEnd is correct and that, combined
with withdraw, the contact can be taken to state {} where non-
successful bidders and beneficiary have recovered their funds.

Consider a scenario in which an auction with 10% fee
has had only two successful bids: 1ETH by addressA and
10ETH from a different address. Once the bidding period is
over, the Auction concrete state reached is [highestBid = 10,
ownerFee = 10, pending = {addressA = 1}, balance = 11,
ended = false, . . .]. This concrete state corresponds to the
abstract state {withdraw, auctionEnd} as it satisfies predicates
withdraw and auctionEnd. If the withdraw method is exe-
cuted by addressA, the amount of 1ETH will be refunded,
resulting in the concrete contract state: [highestBid = 10,
ownerFee = 10, pending = {}, balance = 10, ended = false,
. . .]. This state corresponds to the abstract state {auctionEnd}.
In this case, executing the auctionEnd method will always
fail because the balance is 10ETH but the method needs to
transfer 10ETH to the beneficiary and 1ETH (10% of the

highestBid) to the contract owner. No signs of this undesirable
behavior can be seen in Figure 2a. Indeed, may abstractions
can be deceptive. For example, a sequence of may transi-
tions (such as withdraw followed by auctionEnd from state
{auctionEnd,withdraw}) may not always be possible.

C. Modal Abstractions

We propose using two modalities for validation: may and
must abstractions. Must abstractions are depicted in Figure 2b
and Figure 2c. Black solid arrows are may transitions and their
semantics is exactly the same as the transitions in Figure 2a.
Blue dotted arrows correspond to must transitions.

A must transition labeled f between abstract states s1 and
s2 means that for all concrete states c in s1, there exist actual
parameters values for function f such that executing f in state
c successfully transitions to a concrete state c′ in s2.

A single must transition can have multiple destination states.
For instance, the must transitions labeled withdraw from
state {withdraw, auctionEnd} has two possible destinations:
{auctionEnd} and {withdraw, auctionEnd}. This means that
for every concrete state in {withdraw, auctionEnd}, executing
withdraw will always succeed, leading to either {auctionEnd}
or back to {withdraw, auctionEnd}. The specific destination
depends on the concrete state: if there is only one entry
in pending, the transition leads to {auctionEnd}; otherwise,
it remains in {withdraw, auctionEnd}. The constructor’s be-
havior from the initial state is not represented by a single
transition with two destinations but rather by two separate
must transitions. This distinction arises because, for any given
blockchain state, it is always possible to deploy a contract that
reaches {bid} by setting an auction end time in the future.
Likewise, it is also possible to deploy a contract that reaches
auctionEnd by setting an auction end time in the past.

In contrast to may abstractions, may/must abstractions are
sensitive to the bug in the auction contract. Figure 2b presents



(a) (b) (c)

Fig. 2: (a) Abstraction generated by [22] for buggy and fixed Auction implementations. (b) Modal abstraction of the buggy
implementation. (c) Modal abstraction for the fixed implementation. May transitions, must transitions, and hyper-must transitions
are depicted by solid black, blue dotted, and forked blue dotted arrows, respectively.

a modal abstraction of the buggy contract listed in Figure 1,
while Figure 2c shows an abstraction for the fixed contract.

When inspecting the abstraction for the buggy contract,
an auditor may ask why there is no must transition from
{auctionEnd} to {}. Also, the transition auctionEnd from
{auctionEnd} is a may transition, whereas it is expected to be
a must transition. The answer to this question is the scenario
discussed previously in which a contract state [highestBid =
10, ownerFee = 10, pending = {}, balance = 10, ended =
false, . . .] can be reached. Such a scenario can be generated
automatically and presented to the auditor, potentially helping
them to identify and understand the defect.

It is important to note that the presence of may transitions
does not necessarily indicate a bug. In Figure 2c, the bid
transition is classified as a may transition, which might initially
seem suspicious—why is there at least one concrete state in
{bid} where it is not possible to outbid the highest bidder?
However, the bid amount is of type uint256, with a maximum
value of 232−1. Thus, if a user places a bid at this maximum
value, the contract would reach a concrete state in {bid} where
no further bids can be placed. While this scenario is unlikely
in practice, it remains a theoretical possibility.

While abstraction Figure 2c provides useful insights, it
cannot answer a key question: Is it possible for a non-winning
bidder to retrieve their funds? Although withdraw transitions
are must transitions —meaning that at least one bidder can
always withdraw funds— it does not indicate whether the
withdrawing bidder is the one who placed the bid.

To support validation of such questions, we introduce a
feature that allows auditors to constrain the actual parameter
values of specific function calls. In this case, an auditor may
apply the constraint Φwithdraw

def
= msg.sender = A to withdraw

transitions. Constraining transition f with Φ ensures it models
the execution of f only when its parameters satisfy Φ.

Fig. 3: Refined modal abstraction with the predicate AHas-
Funds, indicating whether user A can withdraw their funds.
withdraw transitions have constraint Φ = {msg.sender = A}.

Figure 3 shows a refined modal abstraction for the fixed
auction contract. This refinement incorporates an additional
predicate (AHasFunds(c) def

= c.pending[A] > 0) that models
whether user A has funds available for withdrawal accord-
ing to the contract’s bookkeeping. Additionally, constraints
Φ = {msg.sender = A} and ¬Φ are applied to withdraw
transitions. In the refined modal abstraction, we can observe



that for abstract states where AHasFunds does not hold,
there are no outgoing transitions with Φwithdraw, which is
correct. Conversely, in abstract states where both predicates
AHasFunds and withdraw hold, we observe that there are
¬Φwithdraw may transitions (indicating no guarantee that users
other than A can withdraw) and there are Φwithdraw must
transitions (indicating that A is always able to withdraw).

We now return to the question: Is it possible for a non-
winning bidder to retrieve their funds? The refined abstrac-
tion provides evidence that the answer is positive for any
bidder A. Once user A is outbid, the system reaches state
bid,AHasFunds. The passage of time (via a τ must transition)
guarantees that state {withdraw,AHasFunds, auctionEnd} will
be reached, from which user A can withdraw their funds
(see the withdrawΦ must transition). Even if auctionEnd is
called before A withdraws, the contract still reaches state
{withdraw,AHasFunds}, where withdrawΦ remains guaran-
teed. Thus, user A is guaranteed to be able to withdraw their
funds, regardless of the actions of other users.

Summarizing, may abstractions have limitations in answer-
ing key audit questions. Above, we illustrate how incorporat-
ing must transitions and constraints can better support auditors
in reasoning about contract behavior.

III. BACKGROUND

A. Predicate Abstractions

In program verification, abstraction typically refers to a
mapping from concrete program states to abstract states.
Predicate abstraction denotes a specific kind of abstraction
where the mapping is induced by a set of logical predicates.
Thus, all concrete states that satisfy the same predicates are
mapped to the same abstract state [28].

B. Predicate Abstractions for Smart Contracts

At the function call level, the semantics of a smart contract
resembles that of an object protocol. A smart contract state is
captured by the values of the internal variables, and transitions
are the functions calls that change its state. However, an
important difference is that the global state of the blockchain
is particularly relevant in a smart contract.

In [22], authors define the semantics of smart contracts,
at a black box level of granularity, as a labeled transition
system ⟨C,C0,Σ,−→⟩. The states in C represent the differ-
ent values that the contract can have plus the state of the
blockchain. Subset C0 ⊆ C contains all possible initial states
at contract deployment. Labels in Σ are all of the possible
function calls F (names plus actual parameter values) and an
additional label τ representing changes in the blockchain that
are uncontrollable by the contract (e.g., a transfer made outside
the contract, the addition of a new block to the blockchain
due to the progress of time, etc.). The set of transitions
−→⊆ C ×Σ×C models all possible successful terminations
of function calls or changes in the blockchain. The presence
of an outgoing transition labeled with a specific function name
f and actual parameter values p1, . . . , pn from state c to
state c′ (i.e., (c, f(p1, . . . , pn), c′) ∈−→) indicates the calling

f(p1, . . . , pn) on the smart contract when it is in state c, it
will successfully execute and transition the contract to state
c′. Similarly, an outgoing transition labeled τ from state c to
c′ (i.e., (c, τ, c′) ∈−→) represents the fact that the blockchain
state and, consequently, the contract’s state, have changed from
c to c′. These transitions are called may transitions and appear
in the abstraction proposed by [22]. Moreover, the presence of
any transition in the abstraction implies that the corresponding
function’s precondition must be satisfied. In smart contracts,
preconditions are typically expressed using require statements
(see, for example, Lines 28-32 from Figure 1).

C. Modal Transition System

Modal Transition Systems (MTS) are an extension of La-
beled Transition Systems in which transitions between states
can exhibit either the may or must modality [26]. The former
indicates a behavior that may be allowed from the state, while
the latter indicates a behavior that must always be allowed.
MTS have been shown to be useful for behavioral description
of systems in many contexts (e.g., [11]). There are many
extensions and variants of MTS such as Disjunctive Modal
Transition System [31] and Parametric Modal Transition Sys-
tem [30]. In this paper, we introduce a variation of MTS to
express properties of relevance to auditors of smart contracts,
but continue to refer to them as MTS.

IV. MTS FOR SMART CONTRACTS VALIDATION

We now formalize the modal abstraction introduced infor-
mally in Section II and briefly outline the prototype design.

A. Formal model

Consider a smart contract ⟨C,C0,Σ,−→⟩ and F be a family
of contract functions. We use

−→
Pf for the set of all possible

actual parameter values that can be used to invoke f . We
consider constraint functions Φf : C ×

−→
Pf −→ bool that

limit the arguments that function f can be invoked at a given
concrete state. We now introduce the predicate step, which
will be used in the following definitions to formalize the
concept of one-step reachability within the context of our
modal abstraction.

step(c, f, ϕf , c
′)

def
= ∃−→p ∈

−→
Pf · ϕf (c,

−→p ) ∧ c′ = f(c,−→p )

Informally, predicate step(c, f, ϕf , c
′) holds if there is an

actual parameter value −→p ∈
−→
Pf that satisfy the constraint

ϕf (c,
−→p ) and after executing function f on c with actual

parameter values −→p , the execution terminates successfully,
leaving the smart contract in a concrete state c′ ∈ C.
Intuitively, the constraint function ϕf can disable the outgoing
transition f(c,−→p ) over the concrete state c.

Following these definitions, we formalize our notion of
Modal Transition Systems for smart contracts. Given a set P of
predicates over states, a set F of smart contract public function
labels (with the additional label τ ), and a set of constraints ϕf ,
the model is defined by the tuple

⟨S = 2P , S0,Σ =
⋃
f∈F

⋃
ϕ∈Φf

⟨f × ϕ⟩, May−→,
Must−→⟩



1) Set S represents all possible abstract states in the model,
defined as the powerset of the set of predicates P . We use
s to refer to a particular abstract state, which is a subset
of P . We use c ∈ s to denote that a concrete state c
belongs to abstract state s (i.e., for all p ∈ s, p(c) holds).

2) Subset S0 ⊆ S contains all possible initial abstract states
at the moment of contract deployment.

3) Σ is an action alphabet defined with the contract’s public
function names and an additional label τ , which repre-
sents changes in the blockchain that are not controllable
by the contract. Each action is paired with constraints ϕ;
for τ , we define ϕτ = True.

4) Relation
May−→⊆ S × Σ × S is a transition relation that

models all possible successful invocations of function
f or changes in the blockchain that satisfy the con-
straints ΦF . Then, we say that we reach a concrete
state c′ from concrete state c through f , in symbols:
⟨s, ⟨f, ϕf ⟩, s′⟩ ∈

May−→ if and only if the following predicate
holds: May

def
= ∃c ∈ s · ∃c′ ∈ s′ · step(c, f, ϕf , c

′)

5) Relation Must−→⊆ S × Σ × 2S is a one-to-n transition
relation that models all possible successful terminations
of function calls or changes in the blockchain. Note
that, unlike in the previous definition, the target of the
transition is now a set of abstract states. We denote the
set of target abstract states from s as Ts ⊆ S. Moreover,
an abstract state is included in Ts only if it is reachable
from all concrete states in s, and Ts must be minimal. We
refer to transitions with a single target state (i.e., |Ts| = 1)
as must transitions, and those with multiple target states
as hyper-must transitions. Formally, ⟨s, ⟨f, ϕf ⟩, Ts⟩ ∈

Must−→
if and only if the following conditions hold:
• NonEmpty: s ̸= ∅
• AllMay: ∀s′ ∈ Ts · ∃c ∈ s · ∃c′ ∈ s′ · step(c, f, ϕf , c

′)
• Must: ∀c ∈ s · ∃s′ ∈ Ts · ∃c′ ∈ s′ · step(c, f, ϕf , c

′)
• Minimal: ∄T ′

s ⊆ Ts · ∀c ∈ s · ∃s′ ∈ T ′
s · ∃c′ ∈ s′ ·

step(c, f, ϕf , c
′)

For the sake of clarity, we added the AllMay constraint,
although it is implied by Minimal and Must.

B. Prototype design

To evaluate our approach, we extended a semi-automatic
predicate abstraction tool for smart contracts, taken from
[22]. This prototype is designed to accept specifications and
predicates written in the Alloy modeling language [27].

Alloy has two main components: the Alloy modeling lan-
guage and the Alloy Analyzer. The Analyzer employs an
exhaustive bounded approach to explore a model’s state space
up to a specified bound. It can generate counterexamples,
allowing auditors to refine abstractions or to shed light on
suspicious scenarios. For instance, if auditors encounter unex-
pected transitions or want to replicate a potential vulnerability,
the prototype can produce examples exhibiting the behavior.

This extended prototype requires the following inputs (cur-
rently provided manually but potentially automatable): (i) an
Alloy specification derived from the Solidity code, including

pre- and postconditions for each function and an invariant
predicate to exclude invalid instances; (ii) a set of abstraction
predicates; and (iii) an optional Φf constraint (by default,
Φf

def
= True). Given these inputs, the prototype automatically

builds a predicate abstraction of the smart contract, following
a methodology similar to that used for building Enabled-
ness Preserving Abstractions (EPAs) [15]. This methodology
emphasizes introducing transitions between abstract states
whenever a concrete transition is deemed feasible.

Extending abstractions to MTS involves translating the
formulas from Section IV-A into first-order logic using Alloy.
In our methodology, transitions labeled as must transitions
involve a universal quantifier over the concrete states of an
abstract state, which results in a formula that the Analyzer
cannot solve directly. To overcome this, we negate the orig-
inal formula into an existentially quantified expression that
Alloy can handle through its exhaustive bounded analysis.
The unsatisfiability of this existential formula up to a given
bound validates the original universal quantifier. Unfortunately,
this approach is unsound: if the bound is too small, we
might erroneously identify a transition as must when it is
not. However, our methodology targets manual validation by
providing a visual representation of the contract’s behavior.
Therefore, if a suspicious must transition is identified, auditors
can adjust the bound and repeat the analysis, which mitigates
the unsoundness of the proposed technique.

The naive algorithm for calculating must transitions involves
performing a specific reachability query for each potential
transition. However, it quickly becomes impractical. Instead,
our prototype follows a three-phase process. First, we build a
LTS as described in [22]. Second, using this abstraction, we
assign a default may modality to all transitions. We then verify
whether each transition f satisfies its feasibility constraint ϕf .
If not, a label ¬Φ is added to transition f ; then we check the
feasibility of must transitions for single target states. Third, for
transitions that were not marked as must but reach multiple
states, we evaluate hyper-must transitions by systematically
checking feasibility of all possible combinations of target
states, stopping at the smallest satisfying set. Artifacts for this
paper are publically available on Zenodo [9].

Since the implementation was developed to empirically
evaluate whether the proposed techniques contribute to smart
contract validation, performance optimization was not a focus.
Nonetheless, Table I reports the generation time in seconds for
each phase to offer insight into execution times. Notably, since
reachability queries for transitions in each phase are paral-
lelizable, further optimizations in this area could substantially
enhance performance.

V. EVALUATION

In this section, we evaluate our predicate abstractions with
must transitions for validating smart contract implementations.
Specifically, we look at the following research questions.

• RQ#1: How prevalent are must transitions in modal
abstractions of smart contracts?



• RQ#2: Does the use of constraint transitions help validate
smart contracts when allowed user role is available?

• RQ#3: Do auditors exploit the distinction between may
and must transitions to reveal issues about behavioral
properties that cannot be captured by may abstractions?

To address RQ#1-RQ#3, we use two benchmarks taken
from the existing literature. The first benchmark (denoted as
B#1) is the Microsoft Azure Workbench Blockchain [3]. This
benchmark has been analyzed in several works [12], [38],
[22]. A key characteristic of this benchmark is the inclusion of
manually created diagrams representing the expected protocol
for each contract. Additionally, each contract comes with an
informal description detailing its intended functionality, states
and roles involved. Each diagram specifies an “Application
Instance Role” (AIR) for each transition, which refers to an
instance role data member in the workflow that stores a global
role, i.e., executing a function is only allowed if the user
address matches the value stored in the instance data variable
associated with that role (e.g., buyer, owner, bidder, etc.). For
our analysis, we use the same contracts studied in [22], but
with the fixed versions from [5].

The second benchmark (denoted as B#2) provides an infor-
mal textual description of the requirements for each contract,
but lacks details about roles and their executable methods. We
used the predicate abstractions built in [22] as our baseline.
For some smart contracts, we analyzed multiple subjects,
corresponding to different abstractions of the same contract
but built with alternative choices of abstraction predicates.
The naming convention for each subject follows the structure
subjectname+ EPA+ pred1 + pred2 + . . . , where EPA
indicates that some predicate abstractions are inspired by the
require clauses [15], and pred1, . . . represent additional
predicates. For example, SimpleAuction+Ended+HB refers to
the SimpleAuction contract without EPA predicates but in-
cludes the predicates Ended and HB (related to highestBidder).
Table I lists the subjects used for both benchmarks.

A key aspect of the modal abstraction generation process
was the introduction of stronger invariant conditions within the
Alloy model. In [22], the original invariant used for generating
may transitions permitted certain concrete states where no
transactions were possible, though this had no effect in the
resulting abstraction. However, for must transitions, which
require a function to be executable from any concrete state,
these stronger invariants proved essential.

To answer RQ#2, we restricted the subjects to those of
B#1, as they are the only ones for which information about
the authorized actions for each role is available. We used
the same abstraction predicates used in [22]. Additionally,
we added the constraint Φf

def
= sender = R for each

public function f , where R represents the roles defined in the
documentation as Application Instance Role (AIR). We then
compared the generated modal abstraction with the original
documentation diagrams. Our evaluation follows this reason-
ing: (i) if a transition with an expected role R is not classified
as must, this indicates a potential issue because there exists

a concrete state where a user with role R cannot execute
the method; (ii) if a transition with a role different from the
expected role R is classified as must or may, it may point to
an access control issue or undocumented behavior.

To address RQ#3, one author and an experienced external
auditor independently conducted a manual inspection of the
modal abstractions for B#2. Their goal was to identify
unexpected, anomalous, or relevant behaviors. This inspection
started with the abstractions alone, referencing the underlying
code only to clarify the protocol’s logic or when unusual
behavior was detected. The external auditor received instruc-
tions in a virtual meeting explaining the may and must
abstractions. Additionally, they were provided with a package
[8] containing, for each subject, the Solidity code, at least
one modal abstraction and a README file with a high level
contract description and a brief explanation of the predicates
used in each abstraction.

A. Results

1) RQ#1: Our findings revealed that must transitions were
present in all case studies. The number of must transitions
for each abstraction is shown in column #M in Table I. We
observed that certain transitions are always must, regardless
of the subject: τ and constructor transitions. This aligns with
our expectations based on common understanding. Transitions
labeled τ are time-related, which are always enabled and
inherently must (and hyper-must) due to the inevitable pro-
gression of time. The constructor is necessary for deploying a
contract and is expected to always be callable with some actual
parameter values. Although rare, certain blockchain states may
prevent contract deployment, but such scenarios were not
found in our subjects. To refine the analysis, we excluded these
always must transitions (i.e., τ and constructor) and examined
the remaining must transitions. This is depicted in column
#M−{τ, C} in Table I. This shows that three abstractions
exhibit no remaining must transitions: Auction+EPA, EPX-
Crowdsale and SimpleAuction+Ended+HB. Upon inspection,
we found that this is due to the low granularity of the
predicates. For example, in SimpleAuction+Ended+HB, the
predicates were based on whether the auction had ended and
if a specific user was the highest bidder. This resulted in
diverse transitions in each abstract state, not all of which were
executable. For instance, in the abstract state {highestBidder =
A,¬ended}, the auctionEnd method is not classified as must
because there are concrete states where the auction remains
open (i.e., not enough time has elapsed). The auctionEnd
method requires the auction to be closed (i.e., enough time has
elapsed) but not yet ended. In another concrete state, where
the auction is closed, executing auctionEnd is possible.

To analyze the prevalence of hyper-must transitions (graph-
ically represented as blue forked transitions), we examined
column #HM in Table I. These transitions appeared in 13 out
of the 28 cases. When excluding τ and constructor transitions
(column #HM−{τ, C}), the proportion of subjects remains
consistent. Notably, no constructor transitions were classified
as hyper-must transitions. This aligns with expectations, as



TABLE I: B denotes benchmark #1 or #2. Subject refers to the contract name and predicates used for each contract. |LOC|
denotes the number of lines of code, |S| abstract states, |M | non-view/non-pure public functions. #Trx refers to the number
transitions, #May May transitions that are not subsumed by must transitions, #M must transitions, #M − {τ, C} must
transitions excluding τ and Constructor, #HM hyper-must transitions, #HM − {τ, C} hyper-must transitions excluding τ
and Constructor. Time, TimeM and TimeHM are generation times in seconds for May, Must and HM transitions, respectively.

B Subject |LOC| |S| |M | #Trx #May #M #M-{τ, C} #HM #HM-{τ, C} Time Time M Time HM

#1

AssetTransfer 225 10 11 32 0 32 31 0 0 15.291 727.625 0.269
BasicProvenance 48 3 3 4 0 4 3 0 0 0.361 0.564 0.031
DefectiveComponentC 33 2 2 2 0 2 1 0 0 0.305 0.227 0.045
DigitalLocker 148 6 10 12 0 12 11 0 0 4.63 5.89 0.061
FrequentFlyerRC 50 2 2 3 0 3 2 0 0 0.352 2.747 0.034
HelloBlockchain 35 2 3 3 0 3 2 0 0 0.192 0.139 0.026
RefrigeratedTransp 108 4 4 8 0 4 3 2 2 1.563 932.224 250.857
RoomThermostat 48 2 4 4 0 4 3 0 0 0.387 0.653 0.033
SimpleMarketplace 66 3 4 4 0 4 3 0 0 0.524 16.509 0.024

#2

Auction+EPA
51

4 4 15 3 4 0 4 2 11.123 320.136 42.398
AuctionFix+EPA 6 5 21 3 8 2 5 3 10.724 318.497 64.16
AuctionFix+EPA+Ended 6 5 21 3 8 2 5 3 10.902 314.686 87.5
Crowdfunding EPA+Balance 55 7 5 23 0 10 4 6 2 89.091 3932.952 1737.533
CrowdfundingFix EPA+Balance 6 5 21 0 11 4 4 2 117.916 4963.163 936.545
EPXCrowdsale

171
7 6 58 14 8 0 6 6 22.495 182.081 484.761

EPXCrowdsale+EPA 4 6 17 2 7 4 4 2 19.061 260.106 154.058
EPXCrowdsale+EPA+isCSClosed 5 6 20 2 9 5 4 2 25.743 336.93 114.529
EscrowVault 102 4 10 17 1 16 11 0 0 45.078 3745.619 0.144
EscrowVault+EPA 4 10 17 1 16 11 0 0 136.08 3763.837 0.5
RefundEscrow 129 3 7 11 2 9 6 0 0 16.842 5200.944 0.062
RefundEscrow+EPA 4 7 16 1 9 5 3 3 51.049 4437.978 1216.816
RockPaperScissors+OneWinner 66 6 4 12 0 12 11 0 0 115.825 2583.81 0.031
RockPaperScissors+EPA 4 4 6 0 6 5 0 0 59.512 1055.916 0.029
SimpleAuction+Ended+HB

50
6 5 26 19 7 0 0 0 4.107 15.627 7.825

SimpleAuction+EPA 8 5 33 0 15 6 8 6 13.774 197.587 76.969
SimpleAuction+EPA+Ended 10 5 38 0 18 7 10 8 16.771 212.258 77.892
ValidatorAuction 260 5 8 15 7 8 2 0 0 20.69 771.325 71.718
ValidatorAuction+EPA 6 8 22 2 7 2 5 3 55.282 929.141 926.142

the constructor is responsible for initializing the contract and
setting the conditions for subsequent operations. It would be
unusual to have a valid concrete state prior deployment in
which the constructor lacked valid parameter values to reach
all abstract initial states.

An analysis of column #May, which reports the number
of transitions classified specifically as may (excluding must
and hyper-must), shows that only a small subset of subjects
exhibit exclusively may transitions. Combined with the earlier
analysis, these findings suggest that must and hyper-must
transitions are not only common in most contracts but also
constitute the majority of transitions. This prevalence may
benefit manual audits, as it allows auditors to concentrate
on understanding why certain transitions deviate from the
expected must or hyper-must classification.

Answer to RQ#1: Must transitions were observed in
all analyzed subjects. Even excluding τ and constructor
transitions, they appear in all but 3 abstractions. Notably,
in 15 subjects, all transitions were classified as must,
underscoring the prevalence of must transitions in the
studied contracts.

2) RQ#2: For each AIR R from each subject in B#1, we
analyze the number of expected allowed transitions for role R
(denoted as #Exp) and the number of must transitions (exclud-
ing constructor and τ ) under the constraint ϕf

def
= sender = R

(denoted as #M ). When these values differ, we manually
inspect the Solidity code to determine the cause.

If #Exp is greater than #M , the diagram suggests that

a role can execute certain transitions, but the abstraction
indicates that it actually cannot. This discrepancy could reveal
a bug in the code or an inconsistency in the provided diagram,
making it a real issue. Conversely, if #Exp is lower than
#M , the abstraction allows more transitions than expected
according to the diagram. It could indicate an access control
issue if the implementation permits an unexpected role to
execute restricted functions. Alternatively, this could also
suggest that the diagram should explicitly include a role that,
according to the code, is always authorized for that function.
Among the analyzed subjects, we found that this discrepancy
occurred in 3 out of 9 subjects.

Now, we discuss each subject in detail.
a) DigitalLocker: For the roles BankAgent and

ThirdPartyRequestor, we observed that #Exp > #M .
Specifically, the documentation states that the BankAgent
role is authorized to call the Terminate method. However,
this method is not classified as a must transition under the
constraint ϕTerminate

def
= sender = BankAgent. This discrepancy

should be reported to the project maintainers to determine
whether it originates from an error in the code or in the
provided diagram. For the ThirdPartyRequestor role, we found
that #Exp = 2 but #M = 1. Upon analyzing the transition
not classified as must, we confirmed that there is no constraint
in the code enforcing that the transition must be executed
by ThirdPartyRequestor. This suggests either that a missing
require(ThirdPartyRequestor==msg.sender)
statement should be added to the code, or that the diagram
incorrectly marks this transition as a ThirdPartyRequestor



AIR. Finally, for the Owner role, we observed that #Exp
<#M . Our analysis indicates that some transitions currently
assigned to the BankAgent role as AIR should instead be
associated with the Owner role.

b) RefrigeratedTransp: In this subject, we observed that
#Exp = 1 but #M = 2 for the roles InitiatingCounterparty
and Counterparty. Upon inspecting the code, we confirmed
that both transitions are always executable by both roles. This
discrepancy suggests that either the diagram should be updated
to reflect that both roles are allowed or the code should be
modified to restrict each function to a single role.

c) AssetTransfer: We observed that for two out of the
four roles, #Exp <#M . Upon closer inspection, we found
that the modifyOffer method was identified as a potential
access control issue. Regarding the provided diagram, this
method should only be called by InstanceBuyer. However, the
generated abstraction indicates that this function can be called
by other roles (InstanceInspector and InstanceAppraiser).
While the abstraction itself was accurate with the Alloy model,
examining the original Solidity code revealed a logical error
in the precondition of the Alloy model: it used OR instead
of AND 1. This allowed a scenario where someone could
modify the offer even if they were not a buyer, as long as the
offer price was non-zero. Interestingly, although this was not
a real coding bug, the constraint feature was able to discover a
specification error that was not detected in previous work [22].

While our evaluation focused on using constraints to check
the sender for access control, this methodology can be used
to other parameters considered relevant by the auditor.

Answer to RQ#2: The combined application of modal
abstraction and the constraint transitions approach en-
abled the identification of an Alloy specification error
in AssetTransfer contract that had not been previously
detected by [22]. Furthermore, our method uncovered
some unreported bugs in the DigitalLocker and Refriger-
atedTransp contracts.

3) RQ#3: This section presents findings from applying
modal abstractions to B#2. We first report the findings of the
author, followed by those of the auditor, and conclude with
a joint assessment. The author identified unexpected behavior
in the following subjects, which we analyze in detail below.

a) EscrowVault: This contract represents a modified Es-
crow contract akin to the RefundEscrow pattern. Funds are
held in escrow until the owner confirms goal achievement
by invoking the setGoalReach function, enabling subsequent
withdrawals. Upon analyzing the abstraction, the withdraw
method was unexpectedly classified as a may transition (i.e.,
a non-must transition). Using the counterexample feature
described in subsection IV-B, we found that executing the
setGoalReach method could lead to concrete states with a zero
balance, thereby preventing withdrawals. This indicates that
setGoalReach can be invoked even when the contract balance

1The Alloy model used sender = InstanceBuyer OR InstanceBuyer>0
instead of the original sender = InstanceBuyer AND InstanceBuyer>0.

is empty. Although this is not a vulnerability, the ability to
successfully call setGoalReach with an empty balance appears
to be an unintended or unusual behavior.

b) ValidatorAuction: This contract facilitates an auction
mechanism for validator slots. It involves whitelisting partic-
ipants, allowing them to submit bids within a specified time-
frame, and collecting deposits. Once the auction concludes,
successful bidders can withdraw their deposits, minus the final
slot price. If the auction fails due to insufficient participation,
all bidders can withdraw their full deposits. We identified
two potential issues related to protocol design and access
control. First, we observed that some transitions, such as
bid, were classified as non-must. Analysis revealed that if
no bidders were added to the whitelist, the bid method and
other transitions would become permanently inaccessible as
they require bidders to be in the whitelist. While not a critical
vulnerability, this represents an unexpected contract outcome.
The issue stems from the startAuction method, which can be
executed without verifying the presence of bidders. Second,
this finding led to a deeper investigation, revealing another
issue: the startAuction method can be called by any user, which
deviates from the expected behavior. Ideally, this method
should be restricted to specific roles (e.g., the owner) or subject
to specific conditions (e.g., a time-based trigger) to ensure
proper auction initiation.

Interestingly, the external auditor also identified issues in
the same contracts:

a) EscrowVault: The auditor questioned why the with-
draw transition was classified as a may-transition and hypoth-
esized that it might be due to the contract balance reaching
zero. They suggested that the tool should provide the means
to confirm whether this scenario is indeed possible.2 Upon
reviewing the code, they confirmed this behavior and found the
fact that the setGoalReach function remained enabled at zero
balance to be unusual, though not indicative of a vulnerability.

b) ValidatorAuction: The auditor also noted several
transitions classified as may-transitions rather than must-
transitions, prompting questions such as “What concrete states
prevent someone from calling bid in the Started state?”, “Are
there states where transitioning to either Ended or Failed is
impossible?”, “From depositPending, are there concrete states
where moving to Ended is not possible?”. Through this anal-
ysis, the auditor identified two key findings: (i) It is possible
that no bidders are added to the whitelist, making the bid
method permanently inaccessible, suggesting a poor protocol
design, and (ii) If sufficient time elapses, the contract may
enter a state where transitioning from depositPending to Ended
becomes impossible. This occurs because the internal variable
lowestSlotPrice is reduced to zero, causing funds to become
permanently locked. This was considered as a vulnerability, as
users would be unable to recover their deposits.

The results from both the author and the external auditor
were largely similar but differed in emphasis. For EscrowVault,

2Since the auditor did not have access to the prototype, they were unable
to refine the abstraction or use the counterexample feature.



the author considered a behavior as a design flaw, while the
auditor found it unusual but not necessarily incorrect. For
ValidatorAuction, both identified the issue preventing bidders
to bid, but the auditor also found a problem involving an
unrecoverable state in which funds would become permanently
locked. In both cases, the key was analyzing non-must tran-
sitions. Understanding why certain transitions were classified
as may was crucial in determining whether they aligned with
the intended contract behavior or revealed underlying issues.

Answer to RQ#3: By leveraging the difference between
may and must transitions, the author and external auditor
identified unexpected behaviors in two subjects that had
gone unnoticed in prior analyses. One case revealed poor
design that allows unusual behavior, while the other
exposed two issues, a security vulnerability and a design
flaw. The integration of may and must transitions within
the same abstraction provided novel insights unattainable
through may abstractions alone.

VI. THREATS TO VALIDITY

Internal Validity: The evaluation was conducted using a
prototype designed to validate the proposed approach, which
involved manually translating Solidity code into the Alloy lan-
guage. This process introduces the potential risk of modeling
errors. Additionally, the use of a lower-bound parameter during
analysis may have led to miscategorization of some must tran-
sitions. To mitigate this risk, we have made all Alloy models
and generated abstractions publicly available for independent
verification at [7].Moreover, note that the selection predicates
greatly impact in the resulting abstractions. A poor selection
may lead to an unhelpful model. To mitigate this threat, we
selected the same predicates as in [22].

External Validity: To reduce the risk of selection bias,
we selected two widely-used benchmarks from the existing
literature [38], [12], [37], [22]. While these benchmarks are
representative of common patterns in smart contracts, gener-
alizing the conclusions may be limiting. Moreover, the eval-
uation of RQ#2 involved only two users, one of whom is an
author. This may restrict the generalization of the findings or
introduce bias. To address this, one of the users was an external
auditor with no involvement in the project, and the evaluation
was intended as a complementary assessment alongside our
primary contributions. Future work should consider a more
comprehensive human study to further validate the approach.

VII. RELATED WORK

This work is inspired by the use of predicate abstraction for
smart contract validation approach [22]. The key difference is
that our work enhances the expressiveness of these models by
incorporating may-must modality and constraint transitions.

Our approach is related to techniques that infer typestates
[16], interfaces [25], or automata learning [13], [20], [34],
[10] from program code or systems. While commonly used for
verification, these methods often impose stricter constraints on
program behavior than our more permissive abstractions.

Another related area of research involves generating be-
havioral models from execution traces [21]. However, these
techniques focus on test case generation and are heavily
dependent on the quality of the provided traces, differing
from our approach, which aims to provide a comprehensive
understanding of the system’s behavior.

In recent years, several approaches have been proposed for
transforming smart contracts into colored Petri Nets [17], [19].
Unlike our approach, which aims for human validation, these
methods are designed to verify the smart contract using a
model checker. VeriSol [38], for instance, verifies the confor-
mance of smart contracts against state machine based work-
flows, ensuring that contract behavior aligns with intended
logic. Although it provides strong verification capabilities, its
focus lies in correctness rather than supporting comprehensive
understanding for human auditors. Similarly, other related
approaches [37], [36], [32] allow specifying liveness properties
such as Is it possible for a non-winning bidder to retrieve their
funds? However, they need a formal specification language
(e.g., LTL). In contrast, our approach obviates the need for
formalization and can potentially uncover unexpected proper-
ties through auditor inspection of the generated abstractions.

Tools like Slither [18] and Surya [4] provide insights into
smart contract structure through visualizations of inheritance,
control flow, and call graphs. However, they primarily focus on
static analysis and fall short of capturing the dynamic behavior
and potential execution sequences offered by our approach.

VIII. CONCLUSIONS

This paper introduces a novel approach to constructing
modal abstractions for smart contract validation. Our method
leverages manually provided predicates to generate abstrac-
tions incorporating may, must and constraint transitions. May
transitions capture possible executions, while must transitions
express always possible execution paths. By introducing con-
straint transitions, an auditor can focus on particular aspects
of contract behavior, such as access control. Our empirical
evaluation confirms the prevalence of must transitions in
smart contract protocols and highlights how our approach
aids in issue detection. Using this method, we uncovered four
previously unreported issues in two established benchmarks.

Future work includes full automation of abstraction gen-
eration, mainly the manual translation of Solidity to Alloy.
We believe that automated verification tools for Solidity can
be helpful. We also aim to improve usability by automating
predicate extraction and suggestions from code and documen-
tation. As automation increases, a comprehensive human study
will be essential to further validate the approach.
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